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Abstract

Integrative complexity is a construct from
political psychology that measures seman-
tic complexity in discourse. Although this
metric has been shown useful in predict-
ing violence and understanding elections,
it is very time-consuming for analysts to
assess. We describe a theory-driven auto-
mated system that improves the state-of-
the-art for this task from Pearson’s r =
0.57 to r = 0.73 through framing the task
as ordinal regression, leveraging dense
vector representations of words, and de-
veloping syntactic and semantic features
that go beyond lexical phrase matching.
Our approach is less labor-intensive and
more transferable than the previous state-
of-the-art for this task. The success of
this system demonstrates the usefulness of
word vectors in transferring context into
new problems with limited available data.

1 Introduction

Although Supreme Court justices and political
candidates are known to use language differently
from each other (e.g., [4, 7]), it is not immediately
obvious how to measure their discourse complex-
ity on a semantic rather than syntactic level. Politi-
cal psychology, however, has a well-vetted and op-
erationalized construct for this purpose. The “in-
tegrative complexity” metric has been studied for
40 years and has been shown useful in realms like
predicting military attacks [23], violence [31], and
winners of elections [4].

Integrative complexity was introduced by Tet-
lock and Suedfeld (see [22, 24]) to measure the
extent to which an author entertains multiple per-
spectives and integrates them into coherence. Dis-
course with low integrative complexity admits the
existence and legitimacy of only a single per-
spective, whereas discourse with high integrative

complexity allows the simultaneous correctness
of multiple perspectives. However, manual scor-
ing of integrative complexity requires substantial
training and time.

Previous attempts to automate the measuring of
integrative complexity use surface lexical features
combined heuristically [5] or classification tech-
niques from machine learning [9]. We improve
on the state-of-the-art with three main contribu-
tions. First, we formulate the task as an ordinal re-
gression optimization problem. Second, we lever-
age dense vector representations of words. Third,
we develop additional syntactic and semantic fea-
tures. Through imposing this additional struc-
ture, we raise state-of-the-art performance on the
30-question test that assesses expert coders from
Pearson’s r = 0.57 to r = 0.73, and we show
gains on four of five larger datasets. In this pa-
per we discuss our approach and experiments on
semantic features, providing insight into the struc-
ture of human complex thought.

2 Related work

We are aware of two published approaches to au-
tomatically score integrative complexity. Conway
et al. [5] describes a hierarchical system that mea-
sures the presence of multiple ideas and then the
integration of those ideas using a set of human-
developed weights. Kannan-Ambili [9] explores
machine learning methods and proposes a seman-
tic coherence feature based in WordNet.

Conway et al. report the best performance on
this problem to date. However, the model used is
quite simple. Its use of surface features and hand-
estimated weights for keywords require a substan-
tial level of human involvement that means the
approach cannot easily be transferred to new lan-
guages or genres. In fact, the authors note that
language change over time poses a challenge to
the system.

Kannan-Ambili’s thesis explores a variety of



machine learning algorithms for classification, in-
cluding logistic regression, support vector ma-
chines, and multi-class classifiers. The work pro-
poses a “semantic coherence” measurement that
averages a function of the path length and path
depth in WordNet between words in the first sen-
tence and the words in each succeeding sentence.

With this paper, we bring a machine learning
and linguistics perspective to this problem that pri-
marily engages psychologists and political scien-
tists.

3 Data

Integrative complexity is measured on a 7-point
scale. Scores of 1 reflect single-idea thinking, and
scores of 7 are assigned to paragraphs with com-
plicated integration of multiple ideas. Benchmark
descriptions fall in between these poles. The met-
ric is well described in Baker-Brown et al. [1]. In
an appendix, we include example data that mo-
tivates the idea that semantic complexity differs
from syntactic complexity.

Thanks to Lucien Conway, Associate Profes-
sor at the University of Montana, we obtained
a dataset of 1108 paragraphs attached with the
rounded average of multiple expert human coder
scores. He and his lab hand-coded these para-
graphs for previous projects. The dataset includes
the training and testing materials used in a well-
known seminar for training human annotators [6],
as well as political debates, self-reflections, and
writings on Christianity.

Much of the data has had capitalization and
punctuation stripped, and in many datasets, the
named entities are replaced with values like
“[agent]”. Additionally, the data lacks examples
at high levels of complexity (see Figure 2) due to
the infrequency with which people convey com-
plex ideas.

4 Approach

We formulate an ordinal regression problem and
evaluate lexical, syntactic, and semantic features,
focusing specifically on alternative formulations
of semantic complexity. Our implementation is
available on GitHub.

4.1 Approach to modeling

We use all-threshold ordinal regression as general-
ized from logistic regression by Rennie and Srebro
in 2005 [20] and implemented in mord [18]. To

perform k-way classification, Rennie and Srebro’s
method transforms the input data to lie on a uni-
dimensional line and learns k − 1 distinguishing
thresholds on that line. The loss function bounds
the mean absolute error through penalizing each
threshold that is crossed upon a mistaken classifi-
cation.

Letting s(l; y) =

{
−1, if l < y

+1, if l ≥ y
, the all-

threshold ordinal regression loss function L
is:

L(z; y) =
k−1∑
l=1

f (s(l; y)(θl − z))

In this equation, z is the number-line value as-
signed to an example, y is the target k-point value,
θl is the threshold associated with class l, and f(·)
is the logistic loss margin penalty function.

Since the data are ordinal, the use of ordinal re-
gression is theoretically appropriate. We observe
empirical support for this approach: this method
produces 300% improvement over vanilla maxi-
mum entropy classification (from r = 0.11± 0.03
to r = 0.30 ± 0.02 in an early experiment) and
25% improvement over class-weighted maximum
entropy classification (r = 0.24 ± 0.02). We ex-
pect class-weighted ordinal regression would pro-
duce further gains.

4.2 Approach to features

We develop length, lexical, syntatic, and semantic
features.

4.2.1 Length features
We extract the following length-related features:
word counts, number of characters, mean and
median word length, and number of words with
length greater than 6.

4.2.2 Lexical features
In keeping with the political psychology literature,
we pre-define lexical patterns whose presence in-
dicates low and high levels of complexity. In par-
ticular, we extract the counts of types and tokens
from string matching on word lists in the follow-
ing categories: transitional phrases on fourteen
themes from a GRE study guide [30] (e.g., as a
result, on the other hand), comparatives (e.g., -est,
-ly, less), modals (e.g., will, could), hedges (e.g.,
practically, would argue), conjunctives (e.g., ac-
cordingly, because), and punctuation (e.g., com-
mas, quotation marks).

https://github.com/ptoman/icgauge


4.2.3 Syntactic features

We include basic syntatic features: the count of S
and SBAR units heading phrases, and the mean
/ median / max / min / spread of syntactic tree
heights in paragraph.

We also include the count of instances in which
a definite determiner appears in the predicate. This
feature draws on the insight from discourse anal-
ysis that people move from “old information” to
“new information”: the subject of each sentence
is expected by the recipient, but the predicate may
be new information. We pair this insight with the
insight that authors use definite determiners only
when they expect the reader is familiar with the
content. As a result, we expect high numbers of
definite determiners in the predicate when the au-
thor perceives only a single valid viewpoint. As
motivating examples, we find this pattern in low-
complexity texts in the training data, such as We
observe the depravity of our age, and Abortion
threatens the moral and Christian character of this
nation.

4.2.4 Semantic complexity: Sentiment
feature

Following suggestions in the literature (e.g., [8,
25, 32]), we hypothesize that complex writing is
more likely to express both positive and nega-
tive aspects of a topic. To capture this intuition,
we measure the min-max spread of sentiment in
a paragraph using Turney and Littman’s seman-
tic orientation method [28], which calculates a
sentiment score for each word through creating
a scale from two opposing seed-sets. We exper-
imented also with using the variance, but the min-
max spread performed better. Due to the lack of
punctuation in our dataset, we calculate sentence
level spread by arbitrarily dividing documents into
units of empirical sentence length 15.

4.2.5 Semantic complexity: Kannan-Ambili’s
feature

Kannan-Ambili [9] hypothesizes that simple ar-
guments use more synonyms and closely related
words than complex arguments.

We reimplement Kannan-Ambili’s semantic co-
herence measure, which treats complexity as taxo-
nomic distance between word pairs. She identifies
whether variants on the same theme recur through
averaging a function of the path length and path
depth in WordNet [15] between words in the first

sentence and the words in each succeeding sen-
tence.

Specifically, Kannan-Ambili defines the seman-
tic similarity between words wi and wj as the
value sij = f1(`ij) ∗ f2(hij). In this equa-
tion, f1(`ij) = 1 if wi and wj are part of the
same concept in WordNet or f1(`ij) = e−α`ij if
they are part of different concepts in WordNet,
where α = 0.2 is a hyperparameter and `ij is the
length of the path between the words. Addition-
ally, f2(hij) = eβhij−e−βhij

eβhij+e−βhij
, where β = 0.6 is a

hyperparameter and hij is the height of the lowest
common subsumer of the word pairs.

Then for each word wj in the first sentence,
Kannan-Ambili estimates its semantic similarity
g(wj) to the rest of the paragraph as the average
of its pairwise similarities with each of them other
words wi:

g(wj) =
1

m

m∑
i

sij

The total paragraph coherence, scaled to fall be-
tween 0 and 1, is the sum of the n word-level
scores across each word in the first sentence:

P = exp(−
n∑
j

g(wj))

Our implementation uses the primary synset for
each word, and returns 0 similarity when a word
does not appear in WordNet or when the pair has
no common subsumers.

4.2.6 Semantic complexity: PCA on GloVe
features

We hypothesize that simple arguments lie in
lower-dimensional semantic spaces than complex
arguments. Given this intuition, we perform Prin-
cipal Components Analysis on a matrix composed
of the GloVe-50 [19] vectors for each unique word
in a paragraph. Using the cumulative variance ex-
plained by each of the leading ten singular val-
ues, we predict each paragraph’s integrative com-
plexity score. We chose 10 singular values em-
pirically: additional singular values do not im-
prove performance, and they increase the propor-
tion of paragraph matrices whose dimensionality
is driven by paragraph length rather than by its un-
derlying semantic dimensionality.

To calculate this measure for each paragraph,
we tokenize the paragraph and form an m-by-n
matrixM that vertically stacks the 50-dimensional



GloVe vectors for each unique token. We zero-
center the columns of M to produce M ′, and find
the matrices U , Σ, and V such that M ′ = UΣV .
We then calculate the amount of variance v(si) ex-
plained by the leading 10 singular values si in Σ:

v(si) =
s2i

m2 · n ·
∑n

j=1 s
2
j

Our features are the cumulative amount of vari-
ance explained by each of the largest 10 singular
values in Σ: f(si) =

∑i
j=1 v(sj).

4.2.7 Semantic complexity: LSTM
entailment features

As our final semantic feature, we hypothesize that
a paragraph’s internal entailment indicates lack
of diversity in viewpoints. To engage this in-
tuition, we design a transfer learning task: we
train a Long-Short Term Memory network to pre-
dict whether a sentence from an entailment dataset
is the “more” or “less” complex member,1 and
then we feed integrative complexity data forward
through the trained model and use the model’s fi-
nal state to predict integrative complexity scores.
Through leveraging the 383,252 entailment exam-
ples in the SNLI [2] and SICK [13] corpora, we are
able to surmount the limited amount of integrative
complexity data available.

Our initial experiments initialized the LSTM
with GloVe [19] word embeddings. Held-out ac-
curacies under this approach, however, are no bet-
ter than chance (50%). Initializing with the GloVe
vectors and updated the embeddings using back-
propogation produces only 53% accuracy even
running the model for large number of epochs.
After trying to make sense of what led to such
low accuracy and looking into similar experiments
that were run by others [10], we conclude that the
GloVe vector space is not suitable for discerning
the complexity of a sentence measured as entail-
ment.

We instead allow the model to learn cus-
tom word representations during backpropagation.
With custom embeddings, the entailment LSTM
achieves 88% accuracy in distinguishing entailer
from entailee – a substantial improvement. How-
ever, with custom embeddings, any words in the
integrative complexity data that do not appear in

1For example, SNLI provides the following pair: (A soc-
cer game with multiple males playing.), (Some men are play-
ing a sport). In this pair, the more detailed and complex left-
hand side sentence entails the right-hand side sentence.

(a) Word lengths (warm: longer, cool: shorter).

(b) Word frequency on log scale (warm: more common,
cool: less common).

(c) Entailment (red: more likely to be the entailer, blue:
more likely to be the entailee.)

Figure 1: t-SNE plot of the embeddings of the
most common 1000 words, colored by possible
explanatory variables. No clear patterns.

the entailment training data back off to random
vectors.

To gain insight into what the custom embed-
dings are capturing that GloVe vectors do not cap-
ture, we visualize the learned embeddings using
t-SNE [29]. We hypothesize that the word em-
beddings might be identifying “genericness” in a
way that GloVe vectors do not capture, such that
“child” may be far from “boy” but close to “kid”
and “furniture”. Within the visualization, how-
ever, the only pattern we see is that the “entailer”
relations contain a wider variety of top words than
the “entailee” relations.

We consider two approaches to using the
model’s final state to tackle predicting integra-



Figure 2: Distribution of human scores in data.
Most paragraphs have low complexity.

tive complexity. In the first approach, we use the
LSTM’s softmax assessment that the input is the
entailer vs. the entailee to estimate the likelihood
that the input is complex. In the second approach,
we introduce a new fully-connected layer of 128
nodes prior to the softmax, and we use the activa-
tions in this layer as the feature vector for predic-
tions.

We test both the approaches and find that the
softmax approach yields similar and, in some
cases, better results when used as a feature. In
most cases, the fully connected layer is function-
ally equivalent to the softmax value, but leads to
poorer results when paragraph contains words of
radically different length. We suspect that this
happens because of noise introduced by 128 dif-
ferent signals in the fully-connected layer.

4.3 Approach to evaluation

We split the data such that approximately 70% of
the data is in train (806 units), 15% is in dev (162
units), and 15% is in test (192 units) (see Figure 2).
We control the splits in two ways: all units from a
single research study are in the same set to facili-
tate out-of-sample extrapolation, and all sets con-
tain a similar proportion of genres, split as general
purpose, political debate, and human training data
material.

Given the limited size of the dataset, we regu-
larize all models and we retrain on the combined
train+dev set after tuning the hyperparameters on
the training set.

We follow Conway et al. and the qualitative
political psychology literature on integrative com-
plexity in reporting Pearson’s correlation coeffi-

cient r and Cronbach’s internal consistency mea-
sure α, both of which are frequently used for ordi-
nal data.

The Pearson correlation r between two zero-
centered vectors v1 and v2 is calculated as:

r =
vT1 v2√

(vT1 v1)(v
T
2 v2)

Cronbach’s α is a commonly used measure of
psychometric scale reliability that is calculated as:

α =
c̄ · n

σ̄ + c̄(n− 1)

where c̄ is the average inter-item covariance, σ̄ is
the average variance, and n is the number of items.

Both metrics rely on relative relationships rather
than absolute correspondence, which means they
may over-represent model performance. For in-
stance, although a system that predicts (1, 1, 2)
when truth is (6, 6, 7) has perfect correlation, its
performance is clearly imperfect. For this reason,
we also explored average F1 score, a classifica-
tion metric that performs intuitively even in cases
of unbalanced classes. Unfortunately, our limited
amount of data means there are often classes with
zero predicted examples, which renders average
F1 meaningless. Although we opt for compari-
son with the existing literature through r and α,
future work may wish to use a statistic of ordinal
association like Kendall’s τ .

5 Results

We achieve state-of-the-art performance in auto-
matically measuring integrative complexity. On
the coding test that assesses human performance,
we achieve r = 0.73 and α = 0.72, which exceeds
and ties respectively the best reported performance
on this task in the literature. However, we do not
achieve parity with expert human coders, which
requires scores of r ≥ 0.85 [1]. Table 1 provides
the comparative performance of our system and
the system described in Conway et al. [5].

Our system, like Conway et al.’s, performs
best on the training materials provided by Baker-
Brown et al. [1]. This suggests that those materials
may be more straightforward to score than para-
graphs in the wild.

We confirm Conway et al.’s finding that genre
matters: our performance is worse on the corpus



r α
Dataset (Genre) Units Us C Us C
Train 806 0.72 0.56 0.82 0.72
Practice Sets (T) 155 0.66 0.61 0.72 0.76
Christian (C) 173 0.47 0.59 0.57 0.74
Heritability (H) 309 0.60 0.49 0.75 0.65
Nixon/Kennedy (P) 95 0.38 0.18 0.47 0.30
2004 Primaries (P) 74 0.56 0.42 0.70 0.55

Dev 162 0.80 NR 0.86 NR
Coding Manual (T) 68 0.73 NR 0.79 NR
Bush/Kerry (P) 94 0.40 0.34 0.51 0.54

Test 192 0.61 0.41 0.63 0.58
Coding Test (T) 30 0.73 0.57 0.72 0.72
Obama/McCain (P) 162 0.47 0.46 0.53 0.63

Table 1: Comparison of our “all features” model
to that of Conway et al. [5]. “NR” indicates un-
reported datasets. Grey cells warn of unfair com-
parisons between models; these are datasets that
Conway et al. used in test. “Genre” reflects the
training materials (T), political debates (P), early
Christian writings (C), and responses to hot-button
issue prompts (H).

of early Christian writings and 1960s-era Nixon-
Kennedy debates, likely because we are unfamil-
iar with the contexts and wrote no features specif-
ically for them.

Given the variance in performance that we and
Conway et al. observe, we suspect that genre has
a substantial effect on the computational task as
currently formulated. Additional data would assist
in fully understanding and characterizing the ways
in which semantic complexity manifests.

6 Analysis and discussion

Ablation tests (in Table 2), although limited by the
inherent independence assumption, indicate that
lexical features are a prime source of good perfor-
mance. Syntactic features and length-related fea-
tures are also useful, though less useful than lexi-
cal phrase matching.

The semantic approaches we test alternatively
provide small improvements (PCA) or no im-
provements (Kannan-Ambili); some are actively
harmful (sentiment features and LSTM transfer
features). We suspect the harmful features are the
result of the curse of dimensionality. By includ-
ing the marginally useful features, we substan-
tially increase the search space and thus decrease
the chances of finding good parameterizations.

Figure 3: Confusion matrix on the test set using
“all features” model.

6.1 Success analysis

Because lexical features are a prime source of
good performance, we are unsurprised that Con-
way et al.’s rule-based scoring approach using only
lexical features performed well. We expect com-
bining our ordinal regression approach and syntac-
tic features with their more extensive lexical fea-
tures would produce further improvements in the
realm of automating integrative complexity.

Our system succeeds primarily in cases where
there are one or two ideas written in simple prose
and on cases that display lexical features indica-
tive of single mindedness like “ever” and “will”,
such as i will eliminate capital gains taxes for the
small businesses and the start ups that will create
the high wage high tech jobs of tomorrow . (Pre-
diction: 2, Truth: 2).

6.2 Error analysis

In general, our system can distinguish “low”
(scores of 1-3, no integration) from “high” (scores
of 4+, some integration) complexity. A confu-
sion matrix appears in Figure 3. Because the
low/high structure of the predictions is prominent,
it may be helpful for future modeling efforts to

Feature Ablation r α

All Features Model 0.612 0.633
⇓ Lexical Features 0.440 0.514

Syntactic Features 0.596 0.614
PCA Features 0.610 0.609

⇑ Kannan-Ambili 0.612 0.634
Length Features 0.625 0.639
Sentiment Features 0.634 0.634
LSTM Transfer Features 0.638 0.652
Removing Harmful Features 0.658 0.658

Table 2: Performance on test set given ablation of
individual feature types.



follow the two-stage approach taken in Conway
et al., in which the presence of multiple ideas is
identified independently and prior to identifying
whether those ideas are integrated, with a distinct
model designed for each task.

The system rarely predicts high scores. We ex-
pect that the pull toward scores of 2, the most com-
mon class, is the result of limited data. Without
sufficient data to learn a robust set of weights, the
model is limited in what it can confidently learn.

Recurring errors fall into four categories: short
but complex, political but simple, theological but
simple, and missing real-world insight. We esti-
mate preponderances by examining a set of 40 er-
rors made on the test set, and 40 examples chosen
at random from the cross-validated train set.

Short but Complex (∼5% train, ∼0% test) We
fail to predict high complexity on some short
syntactically simple texts. Fixing this type
of error may require explicit reasoning about
relations between ideas. It does not suffice
to include features for argument structure as
drawn from the literature (e.g., [12, 16, 21,
26]).

I like to seek the help of the people around
me. Sometimes I gain a lot of valuable in-
formation this way and sometimes it is more
confusing. Even if I do become a little more
confused at first, it is worth seeking advice.
Information, like doubt, holds possibilities.
(Prediction: 3, Truth: 7)

Political but Simple (∼8% train, ∼8% test) We
fail to predict simplicity when politicans
use big words with complex syntax to say
little. Progress on this type of error might
occur with correlates of off-the-cuff political
speech (e.g., “uh”, “my opponent”) that
signal a need for a lower score.

now as far as president [name] is concerned
i have often heard him discuss this question
as i uh related a moment ago the president
has always indicated that we must not make
the mistake in dealing with the dictator of in-
dicating that we are going to make a conces-
sion at the point of a gun whenever you do
that inevitably the dictator is encouraged to
try it again so first it will be [region a] and
[region b] next it may be [region c] . (Predic-
tion: 5, Truth: 1)

Theological but Simple (∼15% train, N/A test)
We fail to correctly predict theological state-
ments as simple. We expect this is because
believers see complex and contradiction-rife
systems of faith as coherent entities. Fixing
this type of error requires context knowledge
and computational theory of mind.

stop your ears therefore when any one speaks
to you at variance with jesus christ the son
of god who was descended from david and
was also of mary who was truly begotten of
god and of the virgin but not after the same
manner for indeed god and man are not the
same he truly assumed a body ... (Prediction:
3, Truth: 1)

Real-World Insight (∼100% train, ∼100% test)
On all examples, we find that the inability
to reason about real-world relationships
causes performance decreases. Addressing
such errors requires background knowledge,
possibly obtainable through dataset mining
and additional modeling.

I like sweets but I don’t really eat them that
much because they tend to make me fat. (Pre-
diction: 2, Truth: 5)

These results suggest that in addition to more
data, this task requires the development of meth-
ods that can understand and reason about the struc-
tures of texts.

6.3 Sensitivity to preprocessing
We explore sensitivity to the data constraint of no
punctuation by comparing (1) training our model
with all punctuation removed, and (2) training our
model with all punctuation available. We use three
datasets from Suedfeld’s training workshop [6]
for which both punctuated and unpunctuated data
are available: Practice Sets, Manual, Coding Test
Sets.

With an independent test of our model using 10-
fold cross-validation on these data, we find cor-
relation and Cronbach’s α are statistically unaf-
fected by the presence of punctuation.

Punctuated dataset Unpunctuated dataset
Pearson’s r 0.54 ± 0.07 0.55 ± 0.07

Cronbach’s α 0.68 ± 0.07 0.70 ± 0.06

Table 3: Performance is statistically unaffected by
the presence of punctuation.



Intuition / Hypothesis r / α Upheld?
Simple arguments lie in lower-dimensional semantic spaces than complex arguments. 0.38 / 0.46 X
Complex writing is more likely to express both positive and negative aspects of an issue. 0.14 / 0.16 ?
Simple arguments use more synonyms and closely related words than complex arguments. 0.00 / 0.00 –
Internal entailment indicates lack of diversity in viewpoints. 0.00 / 0.00 –

Table 4: Our results suggests only that semantically complex paragraphs lie in higher dimensional spaces
than simple paragraphs. (Pearson’s r and Cronbach’s α provide predictive performance of each type of
feature alone; 0.00s indicate across-the-board predictions of the most common class.)

6.4 Discussion of semantic featurs

To gain insight into the structure of the integrative
complexity task, we tested four intuitions about
semantic complexity in human prose. On these
hypotheses, we are surprised to see that only the
hypothesis that simple texts lie in low-dimensional
semantic spaces had predictive power (see Ta-
ble 4) – and that this approach works even though
the GloVe dense word representations were not de-
signed for this task.

Possible explanations for the lack of support for
the other three hypotheses include:

• The sentiment measurements may be less in-
formative than hoped because the dispassion-
ate genres of the test data offered little op-
portunity for emotional awareness to shine,
and/or because the training data included hot-
button issues and the training did not transfer.

• The Kannan-Ambili metric may be unsuc-
cessful at measuring integrative complexity
because much of our data lacks the sentence
boundaries on which the metric is based,
and/or because synonymy is not a good pre-
dictor of complexity.

• The LSTM transfer learning may be unsuc-
cessful at measuring integrative complexity
because 43.71% of the vocabulary in the
train+test data were out of sample for the
LSTM and backed off to random embed-
dings, and/or because the entailment task as
formulated does not support the integrative
complexity task.

On the basis of these results, we suggest that fu-
ture work on features continue to engage only with
sentiment and the amount of variance explained in
low-dimensional spaces, as well as length, lexical
and syntactic features.

7 Conclusion

Our system improves on the state-of-the-art for
measuring integrative complexity, raising correla-
tions from 0.57 to 0.73 on the official 30-question
test and improving scores on four of five larger
datasets. The approach is less labor-intensive and
more transferable to new languages and genres
than the previous state-of-the-art.

Our improvements come from matching the
limited data with stronger theoretical assump-
tions like ordinal regression, word vector semantic
spaces, and linguistically driven syntactic features.
We suspect there is room for additional gains in
other areas driven by theory, including explicit
feature selection, ordinal regression with class-
weighting, two-stage modeling in which weights
are learned to optimize scoring success, and fea-
tures based on theory and systems for detecting
discourse structures within text.

Although it is challenging to develop useful se-
mantic features for this task, the only semantic hy-
potheses that had any predictive power used mean-
ingful word vector representations. The integra-
tive complexity task, then, is another unenvisioned
area in which dense word vector representations
work well.

Finally, the lack of substantial and diverse data
is a major impediment to building successful sys-
tems for measuring integrative complexity. For au-
tomation of integrative complexity to succeed, ad-
ditional data needs to be collected and made pub-
licly available.
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Syntactic - Semantic Complexity Example
Low - Low Soviet agriculture is a disaster and for an obvious reason. Fifty

years ago they collectivized all their farms and made farmers work
not for themselves but for the government. Individual incentives
were lost. Farmers had to work for the glory of the state. And ever
since, the Soviets have not been able to produce enough food to
feed their people. This dismal performance will continue as long
as the leaders in the Kremlin remain committed to the silly notion
that people will work as hard for others as for themselves.

Low - High Some view abortion as a civil liberties issue; others see abortion as
murder. How you view abortion depends on a complicated mixture
of legal, moral, philosophical and perhaps scientific judgments.
For example, is there a constitutional right to abortion? If there is,
what criteria should be used to determine when human life begins?
And, a question that must be answered before any of the others can
be, who possesses the authority to resolve these issues?

High - Low Renunciation of thinking is a declaration of spiritual bankruptcy.
Where there is no longer a conviction that men can get to know the
truth by their own thinking, skepticism begins. Those who work to
make our age skeptical in this way, do so in the expectation that, as
a result of denouncing all hope of self-discovered truth, men will
end by accepting as truth what is forced upon them by authority
and by propaganda.

High - High Their experiences with war and depression during the thirties cre-
ated in many members of our parents’ generation a drive to cre-
ate some form of security for the future that was not available for
them to enjoy in earlier years. By continuously building upon their
gradually increasing assets while still maintaining the conservative
lifestyles they had been pressed to follow during hard times, they
created economic stability for themselves. This economic stabil-
ity, enjoyed by many approaching old age, lends greater power
to seniors’ increasingly vocal demands for an improved quality of
life for the elderly. Their offspring, not having faced the same
hardships as their parents, have had opportunity and cause to be
somewhat reflective about issues pertaining to the quality of life in
general, including the plight of the elderly.

Table 5: Examples of varying levels of syntactic and semantic complexity, taken from Baker-Brown et
al. [1]. Assessments of complexity are based on gold standard scores and intend to illustrate the space of
integrative complexity.
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