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Abstract

Subvocalization is a phenomenon ob-
served while subjects read or think, char-
acterized by involuntary facial and laryn-
geal muscle movements. By measuring
this muscle activity using surface elec-
tromyography (EMG), it may be possi-
ble to perform automatic speech recog-
nition (ASR) and enable silent, hands-
free human-computer interfaces. In our
work, we describe the first approach
toward end-to-end, session-independent
subvocal speech recognition by leverag-
ing character-level recurrent neural net-
works (RNNs) and the connectionist tem-
poral classification loss (CTC). We at-
tempt to address challenges posed by
a lack of data, including poor gener-
alization, through data augmentation of
electromyographic signals, a specialized
multi-modal architecture, and regulariza-
tion. We show results indicating reason-
able qualitative performance on test set ut-
terances, and describe promising avenues
for future work in this direction.

1 Introduction

Subvocalization is silent internal speech produced
while reading. It is characterized by small move-
ments in facial and laryngeal muscles measur-
able by surface electromyography (EMG). A suc-
cessful subvocal speech recognizer would pro-
vide a silent, hands-free human-computer inter-
face. Such an interface can add confidential-
ity to public interactions, improve communica-
tion in high-noise environments, and assist peo-
ple with speech disorders. Although some work
has attempted to perform speech recognition on
EMG recordings of subvocalization, current word-

error rates on the order of 10-50% per speaker on
the EMG-UKA test corpus of approximately 100
unique words (Wand et al., 2014) are far too high
to use subvocal speech recognition in a practical
setting.

Approaches to EMG-based speech recognition
have so far focused on HMM-GMM models. A
hybrid HMM-NN model for phone labeling has
also been briefly explored (Wand and Schultz,
2014). However, obtaining the ground truth phone
alignments in EMG recordings is much more chal-
lenging than with sound. It is also unclear that
laryngeal muscle movements can be classified
into the same phonemes that are used for audible
speech. To address these challenges, we leverage
recent techniques in end-to-end speech recogni-
tion that do not require forced phoneme alignment
models. We also consider large speaker variability
and noisy measurements.

We use a baseline three-layer recurrent neural
network using spectrogram features, and try to
improve performance through feature engineering
and using an ensemble of LSTM-based recurrent
networks. We also explore a multi-modal RNN
architecture that manages to perform best for the
audible EMG dataset, though the recurrent en-
semble models performed best for whispered and
silent EMG data. Through our experiments in fea-
ture engineering, data augmentation and architec-
ture exploration, we achieve a character error rate
of 0.702 on the EMG-UKA dataset, which is an
improvement over the 0.889 CER of our baseline
model.

2 Related Work

Non-audible speech is a focus of ongoing re-
search. The first break-through paper in EMG
recording to speech recognition was Chan et al.
in 2001 (Chan et al., 2001), who achieved an av-



erage accuracy of 93% on a 10-word vocabulary
of English digits. In addition to EMG, researchers
have explored automatic speech recognition using
data from magnetic sensing (Hofe et al., 2013),
radar (Shin and Seo, 2016), and video (Wand et al.,
2016).

Having been inspired by Chan et al., a series of
papers on EMG-based subvocalization began be-
ing published by Jou, Schultz, Wand, and others
beginning in 2007 (Jou et al., 2007). In particular,
the Schultz working group has steadily improved
on models that use a traditional HMM acoustic ar-
chitecture using time-domain features of the EMG
signal, with triphones, phonetic bundling, a lan-
guage model based on broadcast news trigrams,
and lattice rescoring to estimate the most likely
hypothesis word sequences. Because EMG data
differs from audio data, we believe that the pri-
mary contribution of collaborative work of Schultz
and Wand comes in their development of features
for EMG data. Based on sampling frames of time,
they build a feature with high and low frequency
components, which they then reduce in dimen-
sionality using LDA (Schultz and Wand, 2010;
Wand and Schultz, 2014). A 2014 paper from
Wand that develops a neural network architecture
for phone labeling (Wand and Schultz, 2014) may
perform somewhat better, though direct compar-
isons are challenging as the datasets and EMG col-
lection devices differ. The current state-of-the-art
achieves a word error rate of 9.38% for the best
speaker-session combination on a limited set of
words; the reported interquartile range is approxi-
mately 22% to 45%.

An alternative arm of work by Freitas et al.
that attempts to recover text from Portuguese
EMG signals achieves best average performance
of 22.5% word error rate, also under a traditional
approach (Freitas et al., 2012). The authors find
that the nasality of vowels is a primary source of
error, and they suspect that the muscles activated
in producing nasal vowels are not detected well by
the surface EMG. Freitas et al.’s focus on phones
aligns with the work by Schultz and Wand on “ex-
tracting a set of features which directly represent
certain articulatory activities, and, in turn, can be
linked to phonetic features” (Wand and Schultz,
2014), and the history of challenges with that ap-
proach motivate our application of the connection-
ist temporal classification approach.

Connectionist temporal classification

loss (Graves and Jaitly, 2014) reframes the
problem of automatic speech recognition from
one in which speech is comprised of phones
which have a mapping to text, into one in which
speech is decoded directly as text. By feeding a
recurrent neural network architecture the speech
signal or derived features from the speech signal
at each time step, the network learns to generate
characters of text. With minimal postprocessing
to remove duplicated and “blank” characters,
the model’s predictions map very closely to the
character sequence. Because each time step does
not need a hard and correct label reflecting the
phone being uttered, this approach avoids many
of the assumptions that have posed a challenge
for traditional HMM-based modeling. The Graves
et al. paper introducing CTC showed an approx-
imately 5% improvement in label error rate on
TIMIT, from a context-dependent HMM LER of
35.21% to a CTC prefix-searech LER of 30.51%,
and the performance gap has continued to grow
since 2014.

3 Approach

We use the public portion of the EMG-UKA elec-
tromyography dataset, and we derive four alter-
native feature types from that data. Because this
dataset has poor phoneme-level alignments, we
use the character-level CTC problem formulation,
which maps audio recordings directly to textual
transcription rather than predicting a phone as an
intermediary. In contrast to the existing work
in the literature, we strive to build a session-
independent model that does not retrain for each
new EMG session. We experiment with three
approaches in this realm: a mode-independent
model, an ensemble of mode-dependent models,
and a multi-modal model that uses weight sharing
to reduce the number of parameters that must be
trained.

3.1 Dataset

Our data is the public EMG-UKA trial cor-
pus (Wand et al., 2014). The EMG-UKA trial cor-
pus consists of about two hours of EMG record-
ings of four subjects reading utterances from
broadcast news. EMG recordings are available
while subjects read utterances in three modes: au-
dibly, silently, and while whispering. The record-
ings contain 6 channels of EMG data collected at
600 Hz using multiple leads, a sound recording



audible whispered silent
word 4.6 (62) 3.8 (65) 3.4 (57)
phone 3.6 (194) 0.8 (194) 0.2 (188)

Table 1: Quality of data labels provided in corpus
on a 0-5 Likert scale. These results indicate that it
is inappropriate to use phone-level labels for whis-
pered and silent data. We approximate data quality
by averaging across qualitative ratings of five ut-
terances selected at random from each mode, and
we provide the sample size at each level in paren-
theses.

collected at 1600 Hz, and a transcription of the ut-
terance. While sound recordings of utterances are
available, at no point in our work do we use them
to train our models.

Each sample in the corpus contains estimated
phone and word alignments for the audible and
whispered data based on an HMM model of the
audio track, and estimated phone and word align-
ments for the silent data based on a model that
maps the HMM results to the silent mode. Our
analysis of these forced alignments indicates that
they range in quality from excellent to essentially
noise, as described in Table 1.1

The training dataset consists of 1460 utterances,
which we split into a train and a validation set
whose transcript sets do not overlap. Each utter-
ance consists of a median of 9 words (IQR 7-11)
and 54 characters (IQR 38-67). Within the train-
ing set, there are 1145 utterances of 406 unique
sentences, which are split into 711 audible, 187
whispered, and 187 silent examples across the four
speakers. Within the validation set, there are 315
utterances of 105 unique sentences, which are split
into 209 audible, 53 whispered, and 53 silent ex-
amples. The official test split contains 260 utter-
ances on 10 unique sentences, split into 140 audi-
ble, 60 silent, whispered, and 60 silent examples
across the four speakers.

We note that individuals subvocalize differently
from each other, such that models do not easily
generalize across individuals (Wand and Schultz,

1The Likert scale used in the alignments analysis is: 5
(excellent: perfect), 4 (good: 1 or 2 errors), 3 (fair: repeated
mistaggings but understandable), 2 (poor: 1 or more mid-
length subsegments are mistagged), 1 (problematic: not un-
derstandable; long-length subsegments are mistagged), 0 (ir-
relevant: any correctness seems random). The label quality
for silent phones was estimated through tells including the
presence of plosives, the length of the audio segment for a
single phone, and the extent to which the phone-level tran-
script matched the word-level transcript.

2011). The amount of adipose tissue, age and
slackness of skin, muscle cross-talk, and the sur-
face nature of non-invasive EMG can also reduce
signal quality (Kuiken et al., 2003). Additionally,
session-to-session differences in electrode appli-
cation can result in models that overfit to a single
session. A significant challenge of our work is to
therefore design a model that can generalize well
to unseen speakers, sessions, and utterances de-
spite a considerable lack of data.

While the full EMG-UKA corpus contains 8
hours of recording data rather than the 2 hours
available in the trial corpus, it is not publicly avail-
able. The authors of the corpus were not reachable
for release of the full dataset, despite multiple at-
tempts. Because of this, it is impossible for us to
directly compare the performance of our models
against prior work on this dataset.

3.2 EMG feature extraction
Traditional features used in ASR such as MFCCs
cannot be used for EMG data since they rely on
characteristics specific to sound or its human per-
ception. We implement and explore multiple types
of EMG features, derived by splitting the EMG
signals into frames of 27ms, each shifted by 10ms:

Spectrogram Spectrogram features reflect the
DFT of each frame.

Wand 2015 Wand 2015 features reflect the fea-
tures described by Wand in his dissertation
and other work (Wand, 2015). We separate
each EMG channel into a low-frequency and
a high-frequency component by low-pass fil-
tering the signal and subtracting it from the
original. We then compute five time-domain
features per EMG channel: the first two fea-
tures are the frame-based time-domain mean
and power of the low-frequency signal, and
the final three features are the frame-based
high-frequency time-domain power, zero-
crossing rate, and rectified mean. We stack
features from the k frames on either side of
a given frame, setting k = 10 as recom-
mended.

Wand 2015 + LDA We reduce the Wand feature
set to the ` = 12 dimensions that best dis-
criminate the subphones reflecting the be-
ginning, middle, and end of each frame’s
phoneme label by applying linear discrimi-
nant analysis (LDA).



Figure 1: To facilitate learning from limited
data, we build an architecture that provides mode-
independent low-level models that share weights
at higher levels. The intent is to derive useful
shared properties of decoding EMG data from the
relatively larger amount of audible data, while
simplifying the task for the silent and whispered
modes to one of transforming into a shared space.

Wand 2015 + LDA Audible We reduce the
Wand feature set to the ` = 12 dimensions
that best discriminate the subphones in the
audible-mode utterances only.

3.3 Baseline architecture
We perform automatic speech recognition using
an end-to-end neural network from EMG signals.
The baseline model is a three-layer recurrent neu-
ral network using LSTM cells with a connec-
tionist temporal classification (CTC) loss func-
tion (Graves and Jaitly, 2014), with a hidden size
of 256 for all three layers. To prevent exploding
gradients, we use gradient clipping for gradients
beyond a maximum norm of 10. We use the Adam
optimizer with a learning rate of 1e−3. Our base-
line uses the spectrogram feature set described in
Section 3.2.

3.4 Mode-independent architecture
The mode independent architecture uses the
Wand-LDA feature set, and otherwise is identical
to the baseline architecture.

3.5 Mode-dependent architecture ensemble
Since the input utterances are spoken in three dif-
ferent modes (audible, whispered, and silent), it
may be unreasonable to expect a single model
to generalize well to all three types of speech.
We therefore develop an ensemble of three mode-
dependent LSTMs, where each LSTM is trained
on utterances from only one of the modes. Each

LSTM uses a single hidden layer of 256 hidden
units. We note that it may be challenging for the
ensemble to perform well on unseen data, due to
an even more severe lack of training data caused
by the splitting of utterances by mode. Our multi-
modal architecture attempts to address this prob-
lem.

3.6 Multi-modal architecture

Our multi-modal architecture is designed to bridge
the two previous models. In recognition of litera-
ture that reports EMG signals differ by mode, we
introduce a model architecture that includes sepa-
rate layers of weights for each mode and shares
higher layers of weights between modes. This
architecture is intended both to improve mode-
specific performance and to exploit all training
data. It reduces the number of parameters that
must be learned purely from the silent and whis-
pered data, and it allows those modes to benefit
from information learned from the more extensive
audible data. This architecture also allows a sin-
gle feed-forward network to be used in a produc-
tion setting for all three modes of data, without any
assumption that the modes have identical charac-
teristics. Figure 1 illustrates the architecture. In
experiments, we use a single hidden layer of 192
units and a single hidden shared layer of 256 units.

3.7 Language model beam-search decoding

Since all our architectures are trained at a
character-level, spelling mistakes are common in
decoded utterances. To address this problem, we
post-process the top-scoring decoded utterance for
a given input with a second beam search step that
aims to correct the utterance according to a lan-
guage model. We first split the decoded utter-
ance into tokens by the blank character, and con-
sider all character-level edits of each token that
are an edit distance of two characters or fewer
away, including inserting blank tokens. We choose
the sequence of tokens that maximizes the prob-
ability of the utterance according to a four-gram
Kneser-Ney language model pre-trained on the
TED-LIUM corpus (Rousseau et al., 2012).

4 Results

We report final results on the architectures using
Wand 2015 + LDA features, which performed best
empirically. Performance across all approaches
was quite similar. For audible EMG data, the



Audible Whispered Silent All
Baseline (SI, MI) 0.901 0.886 0.888 0.889

Mode agnostic (SI, MI) 0.703 0.704 0.713 0.702
Mode ensemble (SI, MD) 0.696 0.737 0.718 N/A

Multi-modal (SI, MI) 0.707 0.711 0.717 N/A

Table 2: Character error rates for EMG-data-only models collected in the context of audible, whispered,
and silent reading test sets, averaged across sessions. Models marked SI are session-independent, while
models marked SD are session-dependent; models marked MI or MD are mode-independent and mode-
dependent.

mode ensemble performed best, with an improve-
ment in CER from 0.901 to 0.696. On the en-
tire dataset, the mode-independent architecture re-
duced CER from 0.889 to 0.702. The multi-
modal model did not yield gains, however, sug-
gesting that additional individualized layers might
be needed to show further improvement. Our
baseline and revised architecture model results are
shown in Table 2.

Our approaches demonstrate qualitative learn-
ing about phonology that is not reflected in the
quantitative results, as illustrated in Table 3.
A major challenge for the models is learning
to correctly insert spaces given that people do
not pause between speaking words and that the
model only saw 406 unique well-formed sen-
tences. For instance, in the sentence “THE
AVERAGE PERSON DON’T REALIZE HOW
IMPORTANT HONEY BEES ARE”, the model
transcribes “HONEY BEES ARE” as the sin-
gle, phonologically close, word “ONIMERAR”
rather than as “ONI ME RAR”. Unfortunately, our
spelling correction module relies in part on ap-
proximately correct spacing, and so mistakes like
these persist in the quantitative results.

During learning, vowels, liquids, and sonorants
tend to be learned first and they are more likely
to be correct. The model usually identifies a
few fricatives or stops early as well, while it is
struggling to identify precisely the right vowel to
transcribe. For instance, “FOREIGN POLICY”
is transcribed as “FI RE POUSCO”, and “‘THE
STATE OF FLORIDA” is transcribed as “THO
LANTE OF FE IRN”.

The model learns the relatively gross move-
ments associated with place of articulation more
easily than the finer distinctions of manner of ar-
ticulation, as in the alveolar fricative-stop com-
bination of “ST” in “STATE” being transcribed
as the alveolar approximant “L” in “LANTE”. As

with Freitas et al. (Freitas et al., 2012), we find that
nasality is challenging to correctly detect, with
mistakes like “ME” for “BEES”, “TEPOROW”
for “TOMORROW”, and “EMAUTIN” for “THE
MOUNTAIN” being common. Similarly, stops
and fricatives at nearby places of articulation
are commonly confused, as “FRESIDENT” for
“PRESIDENT”. The presence of voicing is ex-
tremely challenging for the model to disam-
biguate, as in an unvoiced mistaken transcription
“CROUND” for the voiced “GROUND” that we
observe during training. Given that no electrodes
detect whether the vocal folds are vibrating, the
voicing information must be recoverable in this
task from an inherent language model in the RNN
rather than from the data itself, and again the lim-
ited amount of data makes this task challenging.

5 Experiments

To improve performance over baseline, we ran ex-
periments changing our model architecture, ap-
plied L2 regularization, explored different EMG
feature sets, and artificially augmented the amount
of available data. These experiments are all fo-
cused on improving generalizability through re-
ducing the opportunity to fit to noise and improv-
ing the amount of data available for appropriately
setting the model parameters.

5.1 Number of parameters

We ran experiments on different hidden state di-
mensionality, and various depth of the recurrent
networks. We notice a trend towards overfitting as
the number of parameters increases and the num-
ber of layers increases. This might be as a result
of the limited dataset used, making it hard to tune
a large number of parameters.



THE AVERAGE PERSON DON’T REALIZE HOW IMPORTANT HONEY BEES ARE
THE RAEBEC SAN CEI ALIZE OLD FOLE ONI ME RAR

O PRESIDENT GOES UNCHALLENGED BY FOREIGN POLICY
TE FRESIDENT AS GTELINTESE PALE FIRE POUSCO

HIS PARTY HAS A PUBLIC RELATIONS PROBLEM ON MINIMUM WAGES
YIES APA DTA POUPBLI ICITONS PMPBLEM OD MAN RANTR

PLEASE JOIN US AGAIN TOMORROW
TPLEAS JTON S AGAN TEPOROW

THE STATE OF FLORIDA HAS A TOUGH POLICY
THO LANTE OF FEIRNA OT I AE BULE

Table 3: Sample decodings of EMG signals on the test set for our mode- and session-independent model.
In each pair, the target utterance is on top, while our model’s decoding is on the bottom. Alignments are
performed manually, including adding blanks if necessary.

5.2 Regularization

Because our models are quick to overfit on the
limited dataset, we experiment with varying the
amount of L2 regularization. L2 regularization
punishes models that rely heavily on a handful of
features that might be perfectly informative within
the small setting of the training data, under the as-
sumption that models that use a variety of clues
in producing their outputs are more likely to gen-
eralize well. We graph the resulting test set per-
formance in Figure 2; all tested models are taken
from the inflection point in the validation loss
curve. We find that our measures of CER are so
noisy that increasing L2 regularization has no dis-
cernible quantitative effect, and perhaps a slight
negative qualitative impact.

5.3 EMG features

Because an early analysis of corpus indicated that
the forced alignments for the whispered and silent
phone labels had poor quality (see Table 1), we
explore performing LDA on only the audible seg-
ments as a means to improve performance. This
investigation is motivated by an initial finding that
on mode-dependent tests, the Wand features out-
perform Wand-LDA by 2.4% for the silent mode
and by 0.7% for the whispered mode, which sug-
gests that LDA without audible data is noisy.
However, when we limit LDA to use only the au-
dible utterances that have better phone alignments,
we find no gain in performance. From these re-
sults, we suspect that the phone-level labels for the
silent and whispered data are so self-inconsistent
that they do not confuse the LDA model.

5.4 Multi-modal architecture
As reported in Table 2, the multi-modal architec-
ture slightly outperformed the mode ensemble on
whispered and silent data, but only outperformed
our baseline model on audible data. This suggests
that the multi-modal architecture may have over-
come some of the mode-dependent whispered and
silent models’ problems with lack of data. How-
ever, large differences in the EMG spectrum may
have overpowered the shared layer of the mapping
between features and transcriptions, thus resulting
in worse performance than the mode agnostic ar-
chitecture.

5.5 Language model beam-search decoding
Our language-model-informed post-processing
step described in Section 3.7 improved the average
CER rates per utterance on the training set. While
original CER after 1000 iterations of training is
0.541, the CER of the same model after applying
our post-processing step is 0.511.

This post-processing step did not improve per-
formance on the validation set. CER increased by
a few percentage points. As seen in Table 3, this is
because decoded tokens are frequently more than
two character edits away from the target token.
Additionally, the initial splitting of tokens requires
that blank characters be inserted at the appropriate
places, which is frequently not the case.

5.6 Data augmentation
Because performance appears to be limited by the
amount of data, we also explore data augmenta-
tion. We implement three augmentation methods
that are appropriate for EMG data:

1. We add 50 Hz noise, which reflects the nom-



inal frequency of the oscillations of alternat-
ing current in an electric power grid with 230
volts (see Figure 3). The noise has a random
period offset, and it is added at an amplitude
chosen at uniformly at random to be no more
than 10% of the maximum amplitude.

2. We remove 50 Hz power line noise with a
Butterworth bandstop filter that excludes fre-
quences between 49 and 51 Hz (see Figure 3).

3. We sample consecutive subsequences of
words from the known utterances, following
the forced alignments provided by the corpus.
We re-sample following analysis on the qual-
ity of word-level alignments as reported in
Table 1, from a suspicion that the benefit of
the larger amount of data available from re-
sampling might offset the downside of mis-
takes in the forced alignments.

We apply data augmentation stochastically. Ut-
terances are selected for augmentation at a rate
of 0.5. Of the utterances selected for augmenta-
tion, half are transformed into a subsequence of
length two or more. After the potential dropping
of part of the utterance, 75% of the examples have
noise added and 25% of the examples have noise
removed.

Unfortunately data augmentation has no statis-
tically significant positive effect on generalization.
Our experiments on this topic used the mode-
dependent models. We found that with data aug-
mentation, the best audible model had worse CER
performance (an increase of 0.01 CER). Under
a data augmentation protocol that selected utter-
ances for augmentation at a rate of 3.0, the whis-

Figure 2: Increasing L2 regularization has no con-
sistent effect on test set generalization.

Figure 3: As part of data augmentation, we add
50 Hz power line noise (middle) to all channels of
the EMG recording (top) at a random amplitude
between 0% and 10% of the maximum signal am-
plitude. The resulting new signal (bottom) is then
used in training.

pered and silent models were also not meaning-
fully improved given data augmentation: the best
whispered model was worse by 0.02 CER, and the
best silent model was worse by 0.03 CER. Because
the quantitative changes have neutral to negative
effects, it appears that data augmentation did not
substantially improve performance.

We attribute the lack of improvement to three
factors. First, because the test data was collected
interspersed with the training data, we suspect that
the noise was consistent across both sets, such that
generalization to this test data specifically did not
benefit from alterations in the noise pattern. Sec-
ond, we suspect that forced word alignments were
in fact too poor, and that they led to confusion dur-
ing learning. We find evidence for this explana-
tion in the transcriptions; given an intended crop of
“(...) REPUBLICANS ON CAPITOL HILL (TO-
DAY)”, the decoded text is “SAID GOBL OL HIL
A”, such that we suspect the actual crop was “S
ON CAPITOL HILL TO-”. And finally, although
selecting subsequences of utterances allows arti-
ficially different sequences, it does not introduce
any additional vocabulary items or patterns of En-
glish word formation, a primary factor by which
the model seems challenged.



6 Conclusion

Our work describes a novel approach to subvo-
cal speech recognition. We decode EMG signals
into utterances in an end-to-end fashion by using
character-level LSTMs trained with the CTC loss
function. Our approach lends itself well to the
poor phoneme-level alignments inherent in EMG
recordings of silent speech. We show some rea-
sonable qualitative decodings on unseen test-set
utterances, although quantitative performance re-
mains far too poor for use in real applications.

Future work in this area could explore using
character level language models during the beam
search decoding phase in an online fashion (rather
than as a post-processing step), as described in re-
lated work in ASR (Maas et al., 2015; Graves and
Jaitly, 2014). Particularly in the case of limited
data, it is likely beneficial to leverage a language
model as a prior that encodes information about
the spelling constraints of the English language,
instead of expecting the subvocal speech recog-
nizer to learn these rules from a small number of
utterances.

Perhaps the most impactful avenue of future
research in this area would be the gathering of
a large, publicly-available dataset of EMG sub-
vocalizaton recordings. Our experiments demon-
strate the need for more than the EMG-UKA trial
corpus’s two hours of data to train our CTC mod-
els, and the full EMG-UKA corpus is not public.
However, by describing the first end-to-end ap-
proach to subvocal speech recognition, we hope to
show that it would be sufficient to simply record
the EMG activity of many subjects while read-
ing, and the time-consuming task of labeling and
aligning utterances at the word or phoneme levels
would not be necessary.
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teve. 2012. Ted-lium: an automatic speech recog-
nition dedicated corpus. In LREC.

Tanja Schultz and Michael Wand. 2010. Model-
ing coarticulation in EMG-based continuous speech
recognition. Speech Communication 52(4):341–
353.

Young Hoon Shin and Jiwon Seo. 2016. Towards con-
tactless silent speech recognition based on detection
of active and visible articulators using ir-uwb radar.
Sensors 16(11):1812.

Michael Wand. 2015. Advancing Electromyographic
Continuous Speech Recognition: Signal Preprocess-
ing and Modeling. KIT Scientific Publishing.

Michael Wand, Matthias Janke, and Tanja Schultz.
2014. The EMG-UKA corpus for electromyo-
graphic speech processing. In The 15th Annual Con-
ference of the International Speech Communication
Association. Interspeech.

Michael Wand, Jan Koutnı́k, and Jürgen Schmidhu-
ber. 2016. Lipreading with long short-term mem-
ory. In Acoustics, Speech and Signal Processing
(ICASSP), 2016 IEEE International Conference on.
IEEE, pages 6115–6119.

Michael Wand and Tanja Schultz. 2011. Session-
independent EMG-based speech recognition. In
Biosignals. Citeseer, pages 295–300.

Michael Wand and Tanja Schultz. 2014. Pattern learn-
ing with deep neural networks in emg-based speech
recognition. In Engineering in Medicine and Bi-
ology Society (EMBC), 2014 36th Annual Interna-
tional Conference of the IEEE. IEEE, pages 4200–
4203.


