

Hybrid Word-Character Neural Machine Translation Pamela Toman, Sigtryggur Kjartansson

Motivation & Background

- Words are **not** the primary level of meaning in all languages.
- Because traditional NMT is word-level, non-analytic languages tend to have lower-quality translations.
- Want a universalist architecture that performs well for all language pairs.

Focusing on Arabic: 5th largest language by number of speakers, understudied, and has a variety of clitics, affixes, spelling ambiguities, and the root-and-pattern morphology of Semitic languages.

30

Sequence Length

40

Goal: Improve Arabic-English Machine Translation. **Benchmark:** Almahairi et al. 2016¹ using BLEU metric. **Approach**: Neural Machine Translation model that achieves open vocabulary.

- 2016:²
 - Source Character-Level Encoder. \bigcirc
 - Word-Level Sequence-to-Sequence with global Ο bilinear attention.³
 - Target Character-Level Generator. 0
- Backs off to the character level when word-level representations do not exist, in order to achieve open vocabulary using a small known vocabulary.

Department of Computer Science, Stanford University

Problem Statement

Method

• We unite three models to create a hybrid word-character model, based on Luong and Manning

Experimental Evaluation & Results

- Achieved BLEU score: 42.10
- Evaluate model by:
- Train with different Ο hidden states sizes.
- Train with different \bigcirc vocabulary sizes.
- Visualize embeddings 0 using t-SNE.
- Inspect attention Ο alignments.
- Use alternative \bigcirc frequency sampling techniques.

Conclusion & Future Direction

- Hybrid architecture combines the strength of both word- and character-based models; fast to train and offer high-quality translation; and achieves open vocabulary.
- Want to add a character-level attention mechanism and/or a convolutional layer to facilitate interactions with Arabic's complex morphology.

² Luong and Manning, 2016; arXiv:1604.00788

Acknowledgements: Ignacio Cases, Microsoft Azure, CS224N staff

¹ Almahairi et al., 2016; arXiv:1606.02680

³ Luong, Pham and Manning, 2015; arXiv:1508.04025