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At 1:00, you will be able to...

» Competence (able to perform on your own, with varying levels of perfection):

» Understand how neural networks extend linear classification, and have some intuition

for how and why they are more powerful

» Know when a neural network variant might be appropriate for your problem and why

=» Know how to get more help

= Exposure (aware):

Articulate some of the challenges in computer vision

Articulate the broad strokes of gradient descent

Recognize the phrase “backpropagation” (it is how we train networks)

Recognize the phrase “convolutional neural network” (it's state-of-the-art for vision)

Express the history of neural networks and some reasons deep learning has been
causing so much excitement in recent years

Be familiar with tools that make networks easier to use: tfransfer learning + software

Recall images from a handful of cool recent papers



Let’'s chat...

How might we predict
a person’s citizenshipe
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Now a challenge...

How do we label images?
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Images as input examples
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How do we figure out the weights W
and offsetfs be




Gradient descent to the rescuel

» Define a “loss function”
» Guess at all the weights W and bias offsets b

» Seek iterative improvement

Lou Piote
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» Define a “loss function”
» Guess at all the weights W and bias offsets b

» Seek iterative improvement

1. Apply f to (X, W, b) to produce the current loss

2. For each parameter (value in W or b),
calculate how the loss responds to change in that param
(this is the gradient = derivative)

3. Update each param with a tiny step away from higher loss

4. Repeat
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Gradient descent to the rescuel

* Not actually the best method for convex problems like linear regression

» Define a “loss function”
» Guess at all the weights W and bias offsets b

» Seek iterative improvement

1. Apply f to (X, W, b) to produce the current loss
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(this is the gradient = derivative) use calculus
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Neural networks let us do better

» More expressive power than linear classification in two major ways:
® Hierarchical decisions: composition into deeper (not “deep”) networks

» Non-linear relationships: threshold at O with RelLUs (rectified linear units)

» Trade-off. estimating more parameters requires more data, memory, fime
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Why do convolutional neural networks
perform bettere

» Performs even better than vanilla neural networks:
= Non-linearities provide more freedom to the learning algorithm
®» Deeper compositions provide hierarchical recognitfion
-- “Person” has “face” has “eye” has “roundness”
-- “Cat walking right” and “cat facing camera” can be combined into “cat”
» “Sliding” mean units are re-usable: faster to train, more robust 1o fransformations

» |n practice, we use many other tricks too (beyond composing convolutional
layers and RelUs)

» Still have performance trade-offs in data, memory, time

“Deepness” of learning now matters:
deeper network = better performance



A foray into history & ImageNet

» FEarly development in ‘60s; some interest in ‘80s

» Mostly scoffed at ‘til ~2010... and then it changed
® Previously only okay performance; neurologists don’t like the parallel

®» Recent huge success in image, speech, text recognition

®» Newfound success widely attributed to: (a) increased data, (b) increased
processing power, (c) training improvements (e.g., ReLU/thresholding at 0)

Top-5 Classification Error:
ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

30.00% 28.20%
25.80%
g =0 ILSVRC:
= 2000% T 1 million images,
4]
S 15.00% 11745 1000 categories
o
L 10.00% 6.66%
g - Human: 5.1% (Karpathy 2014)
F  5.00% e
8 8 22 152
0.00% layers layers
2010 2011 2012 2013 2014 2015

AlexNet GoogleNet ResNet (MS)
[ Deep Networks ]




Convolutional neural networks learn
useful sub-image features

» Filters behave like learned/derived features (auto-derived visual analogues
to Yage of first vote”, “TV watched/year”, “family size”, ...)

Example first-layer filters learned by Krizhevsky et al. 2012 (11x11x3).

Many first-tier computer vision features have this form (“Gabor-like”).

During evaluation, each filter is convolved across the input image to
detect features like horizontal edges, color blobs, textures.

Krizhevsky et al. 2012



http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
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Zeiler and Fergus, 2013
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To use networks yourselt...

» Neural networks have had most success
when the data is;

» | agbeled

» Exhaustive and low-level (e.g. images,
audio)

» Substantial in quantity

= From a realm with unclear or
underperformant theory-driven features

» More computing power (on GPUs) helps

» |imited datae
No problem: use fransfer learning

Stage 1 =

Stage 4 —

Stags 5 =

Stage 65—

Stage 7

Stage d —

Ohutput —
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[nput
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7)Fadl
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9] Rell

| 512x12x12 I

10) Pad 1
11) 1024 conv. filters: 3x3, stride 1
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15) ReLU
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3072xlxl I
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Srage 7.5 —

40%8x1xl

21) Fully connected w 1000 weights g

22) Sofmax

Cutpat —
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Left: Original network

1-1%] Owerfeat featurs extraction

Right: Retraining the classifier head



Software

» Caffe (UC Berkeley):
the original; C++ with Python & MATLAB bindings; underdocumented; being
revised

» Torch (NYU & IDIAP; Facebook, Google DeepMind):
Lua; easy to convert to GPU; active development

= Theano (Montreal):
Python; symbolic computation; two high level wrappers (Keras, Lasagne)

» TensorFlow (Google):
Python; symbolic computation; multiple high level wrapper (Keras and
others); helpful dashboards; extra parallelism




Fooling images

Stanford CS231N: Nguyen, Yosinski and Clune 2014; Szegedy et al. 2013
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Style transfer

» Content and style of art can
be separated

® |t is possible to keep
underlying content structure
and also approximate style
tendencies

Gatys, Ecker, Bethge 2015; Justin Johnson



http://arxiv.org/abs/1508.06576
https://github.com/jcjohnson/neural-style

Image captioning

"little girl is eating piece of cake."

Andrej Karpathy



http://cs.stanford.edu/people/karpathy/deepimagesent/

Image captioning

"baseball player is throwing ball
in game."

"little girl is eating piece of cake."

Andrej Karpathy
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Image captioning

"little girl is eating piece of cake."
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"baseball player is throwing ball
in game."

"woman is holding bunch of
bananas."

Andrej Karpathy



http://cs.stanford.edu/people/karpathy/deepimagesent/

Image captioning

= 23 :;.M . > .
"baseball player is throwing ball "woman is holding bunch of
in game." bananas."

"a cat is sitting on a couch with a
remote control."

Andrej Karpathy



http://cs.stanford.edu/people/karpathy/deepimagesent/

Image captioning

"woman is holding bunch of
in game." bananas."

"a cat is sitting on a couch with a "a young boy is holding a
remote control." baseball bat."

Andrej Karpathy



http://cs.stanford.edu/people/karpathy/deepimagesent/

Google DeepDream

» Whatever the image looks like in @
region, make it look more like that

®» DeepDream goes to the grocery
store:
hitps.//www.youtube.com/waiche
v=DgPaCWJL/XI

Google Research; Stanford CS 231N



https://www.youtube.com/watch?v=DgPaCWJL7XI
http://googleresearch.blogspot.com/2015/06/inceptionism-going-deeper-into-neural.html
http://cs231n.stanford.edu/slides/winter1516_lecture9.pdf

Further resources

» To learn more:
» hitp://cs231n.stanford.edu/ [texts, slides, YouTube videos, homework]

®» Nhitps://www.coursera.org/course/neuralnets [more math, less vision]

» Soffware:
» hitps://qithub.com/torch

» hitps://www.tensorflow.org/

» Nhitp://caffe.berkeleyvision.org/

» hitp://deeplearning.net/software/theano/

®» |mageNet
» Nhitp://www.image-net.org/

» Caffe model zoo:
®» hitps://qithub.com/BVLC/caffe/wiki/Model-Zoo



http://cs231n.stanford.edu/
https://www.coursera.org/course/neuralnets
https://github.com/torch
https://www.tensorflow.org/
http://caffe.berkeleyvision.org/
http://deeplearning.net/software/theano/
http://www.image-net.org/
https://github.com/BVLC/caffe/wiki/Model-Zoo

At 1:00, you are now able fo...

» Competence (able to perform on your own, with varying levels of perfection):

» Understand how neural networks extend linear classification, and have some intuition

for how and why they are more powerful

» Know when a neural network variant might be appropriate for your problem and why

=» Know how to get more help

= Exposure (aware):

Articulate some of the challenges in computer vision

Articulate the broad strokes of gradient descent

Recognize the phrase “backpropagation” (it is how we train networks)
Recognize the phrase “convolutional neural network” (it's state-of-the-art vision)

Express the history of neural networks and some reasons deep learning has been
causing so much excitement in recent years

Be familiar with tools that make networks easier to use: tfransfer learning + software

Recall images from a handful of cool recent papers



