A brief intro to computer vision and neural networks

28 April 2016

Pamela Toman

At 1:00, you will be able to...

- Competence (able to perform on your own, with varying levels of perfection):
 - Understand how neural networks extend linear classification, and have some intuition for how and why they are more powerful
 - Know when a neural network variant might be appropriate for your problem and why
 - Know how to get more help
- **Exposure** (aware):

- Articulate some of the challenges in computer vision
- Articulate the broad strokes of gradient descent
- Recognize the phrase "backpropagation" (it is how we train networks)
- Recognize the phrase "convolutional neural network" (it's state-of-the-art for vision)
- Express the history of neural networks and some reasons deep learning has been causing so much excitement in recent years
- Be familiar with tools that make networks easier to use: transfer learning + software
- Recall images from a handful of cool recent papers

Let's chat...

How might we predict a person's citizenship?

Linear classification

N = number of examples (people: Yeltsin, Swift, Bieber, Obama, you, ...)
F = number of features (characteristics: age of first vote, TV watched/year, alcohol consumed/year, family size, years of education, ...)

C = number of classes (countries: Russia, Canada, USA, China, ...)

How do we label images?

128 height

Images as input examples X

3 (RGB) depth

128 width Y

Images as input examples

128*128*3 = 49152 width (flattened) "cat"

How do we figure out the weights W and offsets b?

Define a "loss function"

- Guess at all the weights W and bias offsets b
- Seek iterative improvement

Define a "loss function"

- Guess at all the weights W and bias offsets b
- Seek iterative improvement

Define a "loss function"

- Guess at all the weights W and bias offsets b
- Seek iterative improvement

Define a "loss function"

- Guess at all the weights W and bias offsets b
- Seek iterative improvement

- Define a "loss function"
- Guess at all the weights W and bias offsets b
- Seek iterative improvement
- 1. Apply f to (X, W, b) to produce the current loss
- For each parameter (value in W or b), calculate how the loss responds to change in that param (this is the gradient ≈ derivative)
- 3. Update each param with a tiny step away from higher loss
- 4. Repeat

- Define a "loss function"
- Guess at all the weights W and bias offsets b
- Seek iterative improvement
- 1. Apply f to (X, W, b) to produce the current loss
- For each parameter (value in W or b), calculate how the loss responds to change in that param (this is the gradient ≈ derivative)

Most efficient to use calculus

- 3. Update each param with a tiny step away from higher loss
- 4. Repeat

- Define a "loss function"
- Guess at all the weights W and bias offsets b
- Seek iterative improvement

- 1. Apply f to (X, W, b) to produce the current loss
- For each parameter (value in W or b), calculate how the loss responds to change in that param (this is the gradient ≈ derivative)
- 3. Update each param with a tiny step away from higher loss
- 4. Repeat

11

Most efficient to use calculus

* Not actually the best method for convex problems like linear regression

- Define a "loss function"
- Guess at all the weights W and bias offsets b
- Seek iterative improvement

- 1. Apply f to (X, W, b) to produce the current loss
- For each parameter (value in W or b), calculate how the loss responds to change in that param (this is the gradient ≈ derivative)
- 3. Update each param with a tiny step away from higher loss
- 4. Repeat

11

Most efficient to use calculus

Data:

airplane automobile bird cat deer dog frog horse ship truck

Data:

horse

ship

Stanford CS231N

truck

Data:

frog

horse

ship

Stanford CS231N

truck

Neural networks let us do better

- More expressive power than linear classification in two major ways:
 - Hierarchical decisions: composition into deeper (not "deep") networks
 - Non-linear relationships: threshold at 0 with ReLUs (rectified linear units)
- Trade-off: estimating more parameters requires more data, memory, time

Neural networks let us do better

- More expressive power than linear classification in two major ways:
 - Hierarchical decisions: composition into deeper (not "deep") networks
 - Non-linear relationships: threshold at 0 with ReLUs (rectified linear units)
- Trade-off: estimating more parameters requires more data, memory, time

Neural networks let us do better

- More expressive power than linear classification in two major ways:
 - Hierarchical decisions: composition into deeper (not "deep") networks
 - Non-linear relationships: threshold at 0 with ReLUs (rectified linear units)
- Trade-off: estimating more parameters requires more data, memory, time

- More expressive power than linear classification in two major ways:
 - Hierarchical decisions: composition into deeper (not "deep") networks
 - Non-linear relationships: threshold at 0 with ReLUs (rectified linear units)
- Trade-off: estimating more parameters requires more data, memory, time

inputs \longrightarrow weights_{hidden_1} \longrightarrow threshold at 0 weights_{hidden_2} \longrightarrow threshold at 0 weights_{hidden_3} \longrightarrow threshold at 0 \longrightarrow weights_{classes} \longrightarrow classes

- More expressive power than linear classification in two major ways:
 - Hierarchical decisions: composition into deeper (not "deep") networks
 - Non-linear relationships: threshold at 0 with ReLUs (rectified linear units)
- Trade-off: estimating more parameters requires more data, memory, time

To estimate the weights, we use backpropagation. It simplifies the loss gradient calculation: we can train through a series of highly local, chain-rule based transformations. Backprop is clever and neat, but too

classes

- More expressive power than linear classification in two major ways:
 - Hierarchical decisions: composition into deeper (not "deep") networks
 - Non-linear relationships: threshold at 0 with ReLUs (rectified linear units)
- Trade-off: estimating more parameters requires more data, memory, time

By assuming image data, we get more powerful models for the same cost

- By assuming image data, we get more powerful models for the same cost
- Instead of flattening each training image, we keep its original 3-D form

- By assuming image data, we get more powerful models for the same cost
- Instead of flattening each training image, we keep its original 3-D form
- Instead of 1 huge weight matrix at each layer, instead we have sets of 3-D filters

- By assuming image data, we get more powerful models for the same cost
- Instead of flattening each training image, we keep its original 3-D form
- Instead of 1 huge weight matrix at each layer, instead we have sets of 3-D filters
 - Each filter looks at a small spatial region (e.g., 3x3 pixels) and the entire input depth (e.g., 3 RGB channels at the top layer)

- By assuming image data, we get more powerful models for the same cost
- Instead of flattening each training image, we keep its original 3-D form

- Instead of 1 huge weight matrix at each layer, instead we have sets of 3-D filters
 - Each filter looks at a small spatial region (e.g., 3x3 pixels) and the entire input depth (e.g., 3 RGB channels at the top layer)
 - We "convolve" (slide) each filter across the entire image in discrete jumps
 - At each place we pause, we calculate a single "activation" value

- By assuming image data, we get more powerful models for the same cost
- Instead of flattening each training image, we keep its original 3-D form
- Instead of 1 huge weight matrix at each layer, instead we have sets of 3-D filters
 - Each filter looks at a small spatial region (e.g., 3x3 pixels) and the entire input depth (e.g., 3 RGB channels at the top layer)
 - We "convolve" (slide) each filter across the entire image in discrete jumps
 - At each place we pause, we calculate a single "activation" value
 - We compile the activation values into the output of the layer

- By assuming image data, we get more powerful models for the same cost
- Instead of flattening each training image, we keep its original 3-D form
- Instead of 1 huge weight matrix at each layer, instead we have sets of 3-D filters
 - Each filter looks at a small spatial region (e.g., 3x3 pixels) and the entire input depth (e.g., 3 RGB channels at the top layer)
 - We "convolve" (slide) each filter across the entire image in discrete jumps
 - At each place we pause, we calculate a single "activation" value
 - We compile the activation values into the output of the layer
- Training learns the weights for each filter that best transform input pixels into class scores

- By assuming image data, we get more powerful models for the same cost
- Instead of flattening each training image, we keep its original 3-D form
- Instead of 1 huge weight matrix at each layer, instead we have sets of 3-D filters
 - Each filter looks at a small spatial region (e.g., 3x3 pixels) and the entire input depth (e.g., 3 RGB channels at the top layer)
 - We "convolve" (slide) each filter across the entire image in discrete jumps
 - At each place we pause, we calculate a single "activation" value
 - We compile the activation values into the output of the layer
- Training learns the weights for each filter that best transform input pixels into class scores

Diagrams of tensors are hard (blame physics!)

- By assuming image data, we get more powerful models for the same cost
- Instead of flattening each training image, we keep its original 3-D form
- Instead of 1 huge weight matrix at each layer, instead we have sets of 3-D filters
 - Each filter looks at a small spatial region (e.g., 3x3 pixels) and the entire input depth (e.g., 3 RGB channels at the top layer)
 - We "convolve" (slide) each filter across the entire image in discrete jumps
 - At each place we pause, we calculate a single "activation" value
 - We compile the activation values into the output of the layer
- Training learns the weights for each filter that best transform input pixels into class scores

Diagrams of tensors are hard (blame physics!) Achieves ~80% accuracy

$f(X;...) = g' \circ h' \circ i' \circ j' \circ \cdots$

Convolutional neural networks let us do even better

- By assuming image data, we get more powerful models for the same cost
- Instead of flattening each training image, we keep its original 3-D form
- Instead of 1 huge weight matrix at each layer, instead we have sets of 3-D filters
 - Each filter looks at a small spatial region (e.g., 3x3 pixels) and the entire input depth (e.g., 3 RGB channels at the top layer)
 - We "convolve" (slide) each filter across the entire image in discrete jumps
 - At each place we pause, we calculate a single "activation" value
 - We compile the activation values into the output of the layer
- Training learns the weights for each filter that best transform input pixels into class scores

Diagrams of tensors are hard (blame physics!) Achieves ~80% accuracy

Why do convolutional neural networks perform better?

- Performs even better than vanilla neural networks:
 - Non-linearities provide more freedom to the learning algorithm
 - Deeper compositions provide hierarchical recognition
 - -- "Person" has "face" has "eye" has "roundness"
 - -- "Cat walking right" and "cat facing camera" can be combined into "cat"
 - "Sliding" mean units are re-usable: faster to train, more robust to transformations
 - In practice, we use many other tricks too (beyond composing convolutional layers and ReLUs)
- Still have performance trade-offs in data, memory, time

"Deepness" of learning now matters: deeper network \Rightarrow better performance

A foray into history & ImageNet

Early development in '60s; some interest in '80s

- Mostly scoffed at 'til ~2010... and then it changed
 - Previously only okay performance; neurologists don't like the parallel
 - Recent huge success in image, speech, text recognition
- Newfound success widely attributed to: (a) increased data, (b) increased processing power, (c) training improvements (e.g., ReLU/thresholding at 0)

Convolutional neural networks learn useful sub-image features

Filters behave like learned/derived features (auto-derived visual analogues to "age of first vote", "TV watched/year", "family size", ...)

Example first-layer filters learned by Krizhevsky et al. 2012 (11x11x3). Many first-tier computer vision features have this form ("Gabor-like"). During evaluation, each filter is convolved across the input image to detect features like horizontal edges, color blobs, textures.

Zeiler and Fergus, 2013

1	3	No.	X	J.	1	A	O.	1(C)			
١	(D)	100	A.	N.	12 de	3	E		(C	BL
1	(g)	No.	1	N. C. C.	- and	-0)	6		C	(a)	Contraction of the second
1			(A)	10	an		Y				Ó
130	1.44	A		10	and the	20	No.			0	
	1	No.	- Mi	0.6	40	-141 0	II IN Y			-	6
N. S.		and the second	-	A.		10					9
		-	+	and the second s			2		्यान्त	alter B	F
- Nor		A. P.	- Ale			-		5			
	-	A.L.	¥	Yr.	新	Contraction of the second	1	-		Z	
		1	- Mg	W.	-		-	5	305		A
1.0	.s. At	14	Ň	至(A.			-	Y	M.	No.
2	1		-		N.	to the		F	-)	2	de
-64	de.	the second		9		-	10	14	0		
Layer 4						1. Mar	1	RE	0		

21

Zeiler and Fergus, 2013

	and the second	-	al.	-		
	100		(in)		1.4.45	
					W	CONTRACT
	N. N	1	3 7	·	1	
		1000	1.8		₩.	
		A Party of the second s	(1)	A.	1	
		A.	6		(14)	
		N.	(9)		((1))	
		107				
(P)	192	чў.	35	100	X	
10	1	500 1	N.	No.	.M.	
1	R	-	×	-	X	
Ø	Ő.	0	(e)	•	٢	
٢	S.				(0)	
Lay	yer	5	(Q)	-		

Zeiler and Fergus, 2013

To use networks yourself...

- Neural networks have had most success when the data is:
 - Labeled
 - Exhaustive and low-level (e.g. images, audio)
 - Substantial in quantity
 - From a realm with unclear or underperformant theory-driven features
- More computing power (on GPUs) helps
- Limited data? No problem: use transfer learning

Left: Original network Right: Retraining the classifier head

- Caffe (UC Berkeley): the original; C++ with Python & MATLAB bindings; underdocumented; being revised
- Torch (NYU & IDIAP; Facebook, Google DeepMind): Lua; easy to convert to GPU; active development
- Theano (Montreal): Python; symbolic computation; two high level wrappers (Keras, Lasagne)

TensorFlow (Google):

Python; symbolic computation; multiple high level wrapper (Keras and others); helpful dashboards; extra parallelism

goldfish

Stanford CS231N; Nguyen, Yosinski and Clune 2014; Szegedy et al. 2013

goldfish

bd	asek	ball	

Stanford CS231N; Nguyen, Yosinski and Clune 2014; Szegedy et al. 2013

goldfish

1	-	2	1	Se .
1	100	1	1 M 1	1
1	100	4	1 11 1	1
No.		1		3
R.	Sec. and	2	100	2
1	a de la	3	1.4.1	1
N. H. S.	1	1	100	1.

baseball

ostrich

26

Style transfer

- Content and style of art can be separated
- It is possible to keep underlying content structure and also approximate style tendencies

27

"little girl is eating piece of cake."

27

"little girl is eating piece of cake."

"baseball player is throwing ball in game."

27

"little girl is eating piece of cake."

"baseball player is throwing ball in game."

"woman is holding bunch of bananas."

"little girl is eating piece of cake."

"baseball player is throwing ball in game."

"woman is holding bunch of bananas."

"a cat is sitting on a couch with a remote control."

"little girl is eating piece of cake."

"baseball player is throwing ball in game."

"woman is holding bunch of bananas."

"a cat is sitting on a couch with a remote control."

"a young boy is holding a baseball bat."

Google DeepDream

28

- Whatever the image looks like in a region, make it look more like that
- DeepDream goes to the grocery store: <u>https://www.youtube.com/watch?</u> <u>v=DgPaCWJL7XI</u>

Google Research; Stanford CS 231N

Further resources

To learn more:

- <u>http://cs231n.stanford.edu/</u> [texts, slides, YouTube videos, homework]
- <u>https://www.coursera.org/course/neuralnets</u> [more math, less vision]
- Software:
 - <u>https://github.com/torch</u>
 - <u>https://www.tensorflow.org/</u>
 - <u>http://caffe.berkeleyvision.org/</u>
 - <u>http://deeplearning.net/software/theano/</u>
- ImageNet
 - <u>http://www.image-net.org/</u>
- Caffe model zoo:
 - https://github.com/BVLC/caffe/wiki/Model-Zoo
At 1:00, you are now able to...

- Competence (able to perform on your own, with varying levels of perfection):
 - Understand how neural networks extend linear classification, and have some intuition for how and why they are more powerful
 - Know when a neural network variant might be appropriate for your problem and why
 - Know how to get more help
- **Exposure** (aware):
 - Articulate some of the challenges in computer vision
 - Articulate the broad strokes of gradient descent
 - Recognize the phrase "backpropagation" (it is how we train networks)
 - Recognize the phrase "convolutional neural network" (it's state-of-the-art vision)
 - Express the history of neural networks and some reasons deep learning has been causing so much excitement in recent years
 - Be familiar with tools that make networks easier to use: transfer learning + software
 - Recall images from a handful of cool recent papers