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At 1:00, you will be able to…

 Competence (able to perform on your own, with varying levels of perfection):

 Understand how neural networks extend linear classification, and have some intuition 
for how and why they are more powerful

 Know when a neural network variant might be appropriate for your problem and why

 Know how to get more help

 Exposure (aware):

 Articulate some of the challenges in computer vision

 Articulate the broad strokes of gradient descent

 Recognize the phrase “backpropagation” (it is how we train networks)

 Recognize the phrase “convolutional neural network” (it’s state-of-the-art for vision)

 Express the history of neural networks and some reasons deep learning has been 
causing so much excitement in recent years

 Be familiar with tools that make networks easier to use: transfer learning + software

 Recall images from a handful of cool recent papers
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Let’s chat…

How might we predict

a person’s citizenship?
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Now a challenge…

How do we label images?
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Images as input examples7
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How do we figure out the weights W

and offsets b?
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Gradient descent to the rescue!

 Define a “loss function”

 Guess at all the weights W and bias offsets b

 Seek iterative improvement
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calculate how the loss responds to change in that param

(this is the gradient ≈ derivative)

3. Update each param with a tiny step away from higher loss

4. Repeat
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Gradient descent to the rescue!

 Define a “loss function”
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* Not actually the best method for convex problems like linear regression

Most efficient to 
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Example:

Sample 

dataset
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Example:

Sample 

dataset

12

Learned weights (templates):

Data:

& results of 

training

Achieves ~40% 
accuracy

Stanford CS231N

http://cs231n.stanford.edu/slides/winter1516_lecture2.pdf


Neural networks let us do better

 More expressive power than linear classification in two major ways:

 Hierarchical decisions: composition into deeper (not “deep”) networks

 Non-linear relationships: threshold at 0 with ReLUs (rectified linear units) 

 Trade-off: estimating more parameters requires more data, memory, time
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Why do convolutional neural networks 

perform better?

 Performs even better than vanilla neural networks:

 Non-linearities provide more freedom to the learning algorithm

 Deeper compositions provide hierarchical recognition

-- “Person” has “face” has “eye” has “roundness”

-- “Cat walking right” and “cat facing camera” can be combined into “cat”

 “Sliding” mean units are re-usable: faster to train, more robust to transformations

 In practice, we use many other tricks too (beyond composing convolutional 
layers and ReLUs)

 Still have performance trade-offs in data, memory, time

“Deepness” of learning now matters: 
deeper network ⇒ better performance
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A foray into history & ImageNet

 Early development in ‘60s; some interest in ‘80s

 Mostly scoffed at ‘til ~2010… and then it changed

 Previously only okay performance; neurologists don’t like the parallel

 Recent huge success in image, speech, text recognition

 Newfound success widely attributed to: (a) increased data, (b) increased 

processing power, (c) training improvements (e.g., ReLU/thresholding at 0)

16

ILSVRC:
1 million images,
1000 categories

Human: 5.1% (Karpathy 2014)



Convolutional neural networks learn 

useful sub-image features

 Filters behave like learned/derived features (auto-derived visual analogues 

to “age of first vote”, “TV watched/year”, “family size”, …)

17

Example first-layer filters learned by Krizhevsky et al. 2012 (11x11x3).

Many first-tier computer vision features have this form (“Gabor-like”).

During evaluation, each filter is convolved across the input image to 
detect features like horizontal edges, color blobs, textures.

Krizhevsky et al. 2012

http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf


What are layers detecting?18

Zeiler and Fergus, 2013

https://www.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf
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Zeiler and Fergus, 2013

https://www.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf


To use networks yourself…

 Neural networks have had most success 

when the data is:

 Labeled

 Exhaustive and low-level (e.g. images, 

audio)

 Substantial in quantity

 From a realm with unclear or 

underperformant theory-driven features

 More computing power (on GPUs) helps

 Limited data? 

No problem: use transfer learning

23

Left: Original network
Right: Retraining the classifier head



Software

 Caffe (UC Berkeley): 

the original; C++ with Python & MATLAB bindings; underdocumented; being 

revised

 Torch (NYU & IDIAP; Facebook, Google DeepMind):

Lua; easy to convert to GPU; active development

 Theano (Montreal):
Python; symbolic computation; two high level wrappers (Keras, Lasagne)

 TensorFlow (Google):

Python; symbolic computation; multiple high level wrapper (Keras and 

others); helpful dashboards; extra parallelism
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Fooling images25

Stanford CS231N; Nguyen, Yosinski and Clune 2014; Szegedy et al. 2013

http://cs231n.stanford.edu/slides/winter1516_lecture9.pdf
http://arxiv.org/abs/1412.1897
http://arxiv.org/abs/1312.6199


Fooling images25

goldfish

Stanford CS231N; Nguyen, Yosinski and Clune 2014; Szegedy et al. 2013

http://cs231n.stanford.edu/slides/winter1516_lecture9.pdf
http://arxiv.org/abs/1412.1897
http://arxiv.org/abs/1312.6199


Fooling images25

goldfish baseball

Stanford CS231N; Nguyen, Yosinski and Clune 2014; Szegedy et al. 2013

http://cs231n.stanford.edu/slides/winter1516_lecture9.pdf
http://arxiv.org/abs/1412.1897
http://arxiv.org/abs/1312.6199


Fooling images25

goldfish ostrichbaseball

Stanford CS231N; Nguyen, Yosinski and Clune 2014; Szegedy et al. 2013

http://cs231n.stanford.edu/slides/winter1516_lecture9.pdf
http://arxiv.org/abs/1412.1897
http://arxiv.org/abs/1312.6199


Style transfer

 Content and style of art can 

be separated

 It is possible to keep 

underlying content structure 

and also approximate style 

tendencies

26

Gatys, Ecker, Bethge 2015; Justin Johnson

http://arxiv.org/abs/1508.06576
https://github.com/jcjohnson/neural-style
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Andrej Karpathy
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Google DeepDream

 Whatever the image looks like in a 

region, make it look more like that

 DeepDream goes to the grocery 

store:

https://www.youtube.com/watch?

v=DgPaCWJL7XI

28

Google Research; Stanford CS 231N

https://www.youtube.com/watch?v=DgPaCWJL7XI
http://googleresearch.blogspot.com/2015/06/inceptionism-going-deeper-into-neural.html
http://cs231n.stanford.edu/slides/winter1516_lecture9.pdf


Further resources

 To learn more:

 http://cs231n.stanford.edu/ [texts, slides, YouTube videos, homework]

 https://www.coursera.org/course/neuralnets [more math, less vision]

 Software:

 https://github.com/torch

 https://www.tensorflow.org/

 http://caffe.berkeleyvision.org/

 http://deeplearning.net/software/theano/

 ImageNet

 http://www.image-net.org/

 Caffe model zoo:

 https://github.com/BVLC/caffe/wiki/Model-Zoo

29

http://cs231n.stanford.edu/
https://www.coursera.org/course/neuralnets
https://github.com/torch
https://www.tensorflow.org/
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At 1:00, you are now able to…

 Competence (able to perform on your own, with varying levels of perfection):

 Understand how neural networks extend linear classification, and have some intuition 
for how and why they are more powerful

 Know when a neural network variant might be appropriate for your problem and why

 Know how to get more help

 Exposure (aware):

 Articulate some of the challenges in computer vision

 Articulate the broad strokes of gradient descent

 Recognize the phrase “backpropagation” (it is how we train networks)

 Recognize the phrase “convolutional neural network” (it’s state-of-the-art vision)

 Express the history of neural networks and some reasons deep learning has been 
causing so much excitement in recent years

 Be familiar with tools that make networks easier to use: transfer learning + software

 Recall images from a handful of cool recent papers
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