A brief intro to
computer vision and
neural networks

28 April 2016

Pamela Toman

At 1:00, you will be able to...

» Competence (able to perform on your own, with varying levels of perfection):

» Understand how neural networks extend linear classification, and have some intuition

for how and why they are more powerful

» Know when a neural network variant might be appropriate for your problem and why

=» Know how to get more help

= Exposure (aware):

Articulate some of the challenges in computer vision

Articulate the broad strokes of gradient descent

Recognize the phrase “backpropagation” (it is how we train networks)

Recognize the phrase “convolutional neural network” (it's state-of-the-art for vision)

Express the history of neural networks and some reasons deep learning has been
causing so much excitement in recent years

Be familiar with tools that make networks easier to use: tfransfer learning + software

Recall images from a handful of cool recent papers

Let’'s chat...

How might we predict
a person’s citizenshipe

Linear classification

Linear classification

N = number of examples (people: Yeltsin, Swift, Bieber, Obama, you, ...)
F = number of features (characteristics: age of first vote, TV watched/year,
alcohol consumed/year, family size, years of education, ...)

Linear classification

{
z

N = number of examples (people: Yeltsin, Swift, Bieber, Obama, you, ...)
F = number of features (characteristics: age of first vote, TV watched/year,
alcohol consumed/year, family size, years of education, ...)

Linear classification

{
z

N = number of examples (people: Yeltsin, Swift, Bieber, Obama, you, ...)

F = number of features (characteristics: age of first vote, TV watched/year,
alcohol consumed/year, family size, years of education, ...)

C = number of classes (countries: Russia, Canada, USA, Ching, ...)

Linear classification

N = number of examples (people: Yeltsin, Swift, Bieber, Obama, you, ...)

F = number of features (characteristics: age of first vote, TV watched/year,
alcohol consumed/year, family size, years of education, ...)

C = number of classes (countries: Russia, Canada, USA, Ching, ...)

Linear classification

|
]]

N = number of examples (people: Yeltsin, Swift, Bieber, Obama, you, ...)

F = number of features (characteristics: age of first vote, TV watched/year,
alcohol consumed/year, family size, years of education, ...)

C = number of classes (countries: Russia, Canada, USA, Ching, ...)

Linear classification

F C | C
F F |

1 |

N ZNH

N = number of examples (people: Yeltsin, Swift, Bieber, Obama, you, ...)

F = number of features (characteristics: age of first vote, TV watched/year,
alcohol consumed/year, family size, years of education, ...)

C = number of classes (countries: Russia, Canada, USA, Ching, ...)

fOXGW,b) =XW + b
Linear classification

F C | C
F F |

1 |

N ZNH

N = number of examples (people: Yeltsin, Swift, Bieber, Obama, you, ...)

F = number of features (characteristics: age of first vote, TV watched/year,
alcohol consumed/year, family size, years of education, ...)

C = number of classes (countries: Russia, Canada, USA, Ching, ...)

Now a challenge...

Now a challenge...

Now a challenge...

Now a challenge...

How do we label images?

Images as input examples

Images as input examples

128
height

cat”

Images as input examples

1 . 1] "
. FTTT o o T IR T IR NLA Bl P el e oo
128 height - ¢ | CCIT
height
128*128*3 = 49152

width (flattened)

Images as input examples

1) 1 1
q T . e N] =3 il e cee
128 height e — - T T A P | cat
height
128*128*3 = 49152
width (flattened)
1 3 1 1
128 height 4 . & e e CO-I-
height
128*128*3 = 49152
width (flattened)

128 @
width S

Images as input examples

1 . 1] "
. T . T s B e : 2 il v e oo
198 height o~ PO R RS (7| DI . C(]'I'
height
© 128%128*3 = 49152
width (flattened)
1 (1] "
h]?8ht height < = 9 F v i P CO-I-
eig
128%128*3 = 49152
width (flattened)
(1] b' | 1"
128] G 1 F1 1 | MO | 11 1] | M ICyCle
eig
height
128%128*3 = 49152
width (flattened)

Images as input examples

X Y

F=49152 1

How do we figure out the weights W
and offsetfs be

Gradient descent to the rescuel

» Define a “loss function”
» Guess at all the weights W and bias offsets b

» Seek iterative improvement

Lou Piote

http://www.loupiote.com/photos/88562700.shtml

Gradient descent to the rescuel

» Define a “loss function”
» Guess at all the weights W and bias offsets b

» Seek iterative improvement

Lou Piote

http://www.loupiote.com/photos/88562700.shtml

Gradient descent to the rescuel

» Define a “loss function”
» Guess at all the weights W and bias offsets b

» Seek iterative improvement

Cargo Collective

http://cargocollective.com/benmakesphotos/Foggy-Mountains

Gradient descent to the rescuel

» Define a “loss function”
» Guess at all the weights W and bias offsets b

» Seek iterative improvement

Cargo Collective

http://cargocollective.com/benmakesphotos/Foggy-Mountains

Gradient descent to the rescuel

» Define a “loss function”
» Guess at all the weights W and bias offsets b

» Seek iterative improvement

1. Apply f to (X, W, b) to produce the current loss

2. For each parameter (value in W or b),
calculate how the loss responds to change in that param
(this is the gradient = derivative)

3. Update each param with a tiny step away from higher loss

4. Repeat

Gradient descent to the rescuel

» Define a “loss function”
» Guess at all the weights W and bias offsets b

» Seek iterative improvement

1. Apply f to (X, W, b) to produce the current loss

2. For each parameter (value in W or b), B
calculate how the loss responds to change in that param Most efficient to
(this is the gradient = derivative) use calculus

3. Update each param with a tiny step away from higher loss

4. Repeat

Gradient descent to the rescuel

» Define a “loss function”
» Guess at all the weights W and bias offsets b

» Seek iterative improvement

1. Apply f to (X, W, b) to produce the current loss

2. For each parameter (value in W or b), B
calculate how the loss responds to change in that param Most efficient to
(this is the gradient = derivative) use calculus

3. Update each param with a tiny step away from higher loss

4. Repeat

Gradient descent to the rescuel

* Not actually the best method for convex problems like linear regression

» Define a “loss function”
» Guess at all the weights W and bias offsets b

» Seek iterative improvement

1. Apply f to (X, W, b) to produce the current loss

2. For each parameter (value in W or b), B
calculate how the loss responds to change in that param Most efficient to
(this is the gradient = derivative) use calculus

3. Update each param with a tiny step away from higher loss

4. Repeat

1 29REAEM N8

i .." : ! -
T2 v B <SS N
ST aE Bl | B
Riasg=EaEsm
TA-M>2E@6RE 8
WVISERCET AR
NEEd - [At 20 "
EBIRSyrEeREE 13
AR E SEEr S
HOVESEEEINY

Data:

2
© 9
c
) m o 4 Q X
o © T (o)) (@] = O
E 53 &2 ® © 6 9 6 E B
" 68 A O v U E £ v B

Example
Sample
dataset

Z
%
A
%)
O
e
9

C
-0
w

http://cs231n.stanford.edu/slides/winter1516_lecture2.pdf

' 5 I A B ¥
IR R SN
TPk P
B> =CaEam
HA-EEGEE IN
N S
FE=AETEENE |
pERsrEeHE"Y
HiiHE NEEE
I ESEEANY

Data:

ew
§ £ o
2 S v . 5 o o 2 o O
= 3 = ® © o 9 o £ 2
 ®©8 L0 O T T = £ » -
- 9
x O e
Q
V)
o 20z O o
O v 2 C y
& O @ C £
G c+ 0= S
¢ o O O 2
LT o O S = 9
C
O
9

Stanford CS231N

http://cs231n.stanford.edu/slides/winter1516_lecture2.pdf

Dafta:

X airplane #.% » .=&5
Exqmple. automobile Ez o~ ‘
S vl WS § LI

ample w EEGEEEEEs P
dOTQS@T deer n-m '3 ‘
& results of deg RSN e [N "
fraining rog [N O) O B
Achieves ~40% s . ;q:“"\ um
accuracy Ship EEE-‘ g!ﬂ

ek o R e U 158 5 o (1 S

Learned weights (templates):
bird cat deer

plane car

ship

truck

Stanford CS231N

g

dog

horse

L 4

http://cs231n.stanford.edu/slides/winter1516_lecture2.pdf

Neural networks let us do better

» More expressive power than linear classification in two major ways:
® Hierarchical decisions: composition into deeper (not “deep”) networks

» Non-linear relationships: threshold at O with RelLUs (rectified linear units)

» Trade-off. estimating more parameters requires more data, memory, fime

Neural networks let us do better

» More expressive power than linear classification in two major ways:
® Hierarchical decisions: composition into deeper (not “deep”) networks

» Non-linear relationships: threshold at O with RelLUs (rectified linear units)

» Trade-off. estimating more parameters requires more data, memory, fime

INpUts —— weights ges — Classes

Neural networks let us do better

» More expressive power than linear classification in two major ways:
® Hierarchical decisions: composition into deeper (not “deep”) networks

» Non-linear relationships: threshold at O with RelLUs (rectified linear units)

» Trade-off. estimating more parameters requires more data, memory, fime

INpUts —— weights ges — Classes

inputs —— weightsygen 1 — threshold at 0

o e

weights,iygen o — = threshold at 0

s o

weights,iggen 3 — = threshold at 0 ——— weights yses — = Classes

f(X;..)=gohojojo-..
Neural networks let us do better

» More expressive power than linear classification in two major ways:
® Hierarchical decisions: composition into deeper (not “deep”) networks

» Non-linear relationships: threshold at O with RelLUs (rectified linear units)

» Trade-off. estimating more parameters requires more data, memory, fime

INputs —— weights_y.es — classes

inputs —— weightsygen 1 — threshold at 0

o e

s o

weights,iggen 3 — = threshold at 0 ——— weights yses — = Classes

f(X;..)=gohojojo-..

Neural networks let us do better

» More expressive power than linear classification in two major ways:

® Hierarchical decisions: composition into deeper (not “deep”) networks

» Non-linear relationships: threshold at O with RelLUs (rectified linear units)

» Trade-off. estimating more parameters requires more data, memory, fime

INputs —— weights_y.es — classes

inputs —— weightsygen 1 — threshold at 0

o e

-

G) estimate the weights, we
use backpropagation. It
simplifies the loss gradient
calculation: we can frain
through a series of highly
local, chain-rule based
fransformations. Backprop is
clever and neat, but foo

{nofhy for this tfalk.

~N

/

weights,iggen 3 — = threshold at 0 ——— weights yses — = Classes

f(X;..)=gohojojo-..
Neural networks let us do better

» More expressive power than linear classification in two major ways:
® Hierarchical decisions: composition into deeper (not “deep”) networks

» Non-linear relationships: threshold at O with RelLUs (rectified linear units)

» Trade-off. estimating more parameters requires more data, memory, fime

iINputs —— weights yees — Classes G) estimate the weights, we \
use backpropagation. It
simplifies the loss gradient
inputs — weights, .yqen 1 —* threshold at 0 calculation: we can frain
- through a series of highly
/ local, chain-rule based
. fransformations. Backprop is
Achieves ~55% weightsggen » —* threshold af 0 clever and neat, but too

thy for this falk.
accuracy / \ ety ering /

weights,iggen 3 — = threshold at 0 ——— weights yses — = Classes

Convolutional neural networks let us do
even better

Convolutional neural networks let us do
even better

= By assuming image data, we get more powerful models for the same cost

Convolutional neural networks let us do
even better

= By assuming image data, we get more powerful models for the same cost

» |nstead of flattening each training image, we keep its original 3-D form

Convolutional neural networks let us do
even better

= By assuming image data, we get more powerful models for the same cost

» |nstead of flattening each training image, we keep its original 3-D form

= |nstead of 1 huge weight matrix at each layer, instead we have sets of 3-D filters

Convolutional neural networks let us do
even better

= By assuming image data, we get more powerful models for the same cost

» |nstead of flattening each training image, we keep its original 3-D form
= |nstead of 1 huge weight matrix at each layer, instead we have sets of 3-D filters

= Each filter looks at a small spatial region (e.g., 3x3 pixels) and the entire input depth
(e.g., 3 RGB channels at the top layer)

Convolutional neural networks let us do
even better

= By assuming image data, we get more powerful models for the same cost

» |nstead of flattening each training image, we keep its original 3-D form
= |nstead of 1 huge weight matrix at each layer, instead we have sets of 3-D filters

= Each filter looks at a small spatial region (e.g., 3x3 pixels) and the entire input depth
(e.g., 3 RGB channels at the top layer)

= We “convolve” (slide) each filter across the entire image in discrete jumps

= At each place we pause, we calculate a single “activation” value

Convolutional neural networks let us do
even better

= By assuming image data, we get more powerful models for the same cost

» |nstead of flattening each training image, we keep its original 3-D form
= |nstead of 1 huge weight matrix at each layer, instead we have sets of 3-D filters

= Each filter looks at a small spatial region (e.g., 3x3 pixels) and the entire input depth
(e.g., 3 RGB channels at the top layer)

= We “convolve” (slide) each filter across the entire image in discrete jumps
= At each place we pause, we calculate a single “activation” value

» We compile the activation values into the output of the layer

Convolutional neural networks let us do
even better

= By assuming image data, we get more powerful models for the same cost

» |nstead of flattening each training image, we keep its original 3-D form
» |nstead of 1 huge weight matrix at each layer, instead we have sets of 3-D filters

» Each filter looks at a small spatial region (e.g., 3x3 pixels) and the entire input depth
(e.g., 3 RGB channels at the top layer)

» We “convolve” (slide) each filter across the entire image in discrete jumps
= At each place we pause, we calculate a single “activation” value
» We compile the activation values into the output of the layer

= Training learns the weights for each filter that best transform input pixels into
class scores

Convolutional neural networks let us do
even better

= By assuming image data, we get more powerful models for the same cost

» |nstead of flattening each training image, we keep its original 3-D form
» |nstead of 1 huge weight matrix at each layer, instead we have sets of 3-D filters

» Each filter looks at a small spatial region (e.g., 3x3 pixels) and the entire input depth
(e.g., 3 RGB channels at the top layer)

» We “convolve” (slide) each filter across the entire image in discrete jumps
= At each place we pause, we calculate a single “activation” value
» We compile the activation values into the output of the layer

= Training learns the weights for each filter that best transform input pixels into
class scores

Diagrams of tensors are hard
(blame physics!)

Convolutional neural networks let us do
even better

= By assuming image data, we get more powerful models for the same cost

» |nstead of flattening each training image, we keep its original 3-D form
» |nstead of 1 huge weight matrix at each layer, instead we have sets of 3-D filters

» Each filter looks at a small spatial region (e.g., 3x3 pixels) and the entire input depth
(e.g., 3 RGB channels at the top layer)

» We “convolve” (slide) each filter across the entire image in discrete jumps
= At each place we pause, we calculate a single “activation” value
» We compile the activation values into the output of the layer

= Training learns the weights for each filter that best transform input pixels into
class scores

Diagrams of tensors are hard Achieves ~80% accuracy
(blame physics!)

f(X;..)=g'oh'oj oj o-.
Convolutional neural networks let us do
even befter

= By assuming image data, we get more powerful models for the same cost

» |nstead of flattening each training image, we keep its original 3-D form
» |nstead of 1 huge weight matrix at each layer, instead we have sets of 3-D filters

» Each filter looks at a small spatial region (e.g., 3x3 pixels) and the entire input depth
(e.g., 3 RGB channels at the top layer)

= We “convolve” (slide) each filter across the entire image in discrete jumps
= At each place we pause, we calculate a single “activation” value

» We compile the activation values into the output of the layer

= Training learns the weights for each filter that best transform input pixels into
class scores

Diagrams of tensors are hard Achieves ~80% accuracy
(blame physics!)

Why do convolutional neural networks
perform bettere

» Performs even better than vanilla neural networks:
= Non-linearities provide more freedom to the learning algorithm
®» Deeper compositions provide hierarchical recognitfion
-- “Person” has “face” has “eye” has “roundness”
-- “Cat walking right” and “cat facing camera” can be combined into “cat”
» “Sliding” mean units are re-usable: faster to train, more robust 1o fransformations

» |n practice, we use many other tricks too (beyond composing convolutional
layers and RelUs)

» Still have performance trade-offs in data, memory, time

“Deepness” of learning now matters:
deeper network = better performance

A foray into history & ImageNet

» FEarly development in ‘60s; some interest in ‘80s

» Mostly scoffed at ‘til ~2010... and then it changed
® Previously only okay performance; neurologists don’t like the parallel

®» Recent huge success in image, speech, text recognition

®» Newfound success widely attributed to: (a) increased data, (b) increased
processing power, (c) training improvements (e.g., ReLU/thresholding at 0)

Top-5 Classification Error:
ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

30.00% 28.20%
25.80%
g =0 ILSVRC:
= 2000% T 1 million images,
4]
S 15.00% 11745 1000 categories
o
L 10.00% 6.66%
g - Human: 5.1% (Karpathy 2014)
F 5.00% e
8 8 22 152
0.00% layers layers
2010 2011 2012 2013 2014 2015

AlexNet GoogleNet ResNet (MS)
[Deep Networks]

Convolutional neural networks learn
useful sub-image features

» Filters behave like learned/derived features (auto-derived visual analogues
to Yage of first vote”, “TV watched/year”, “family size”, ...)

Example first-layer filters learned by Krizhevsky et al. 2012 (11x11x3).

Many first-tier computer vision features have this form (“Gabor-like”).

During evaluation, each filter is convolved across the input image to
detect features like horizontal edges, color blobs, textures.

Krizhevsky et al. 2012

http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

What are layers detectinge

Zeiler and Fergus, 2013

https://www.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

What are layers detecting?

WW"M- 1
M ’Ulll e

v

B
Jm
. s
W) -)
= s

Zeiler and Fergus, 2013

https://www.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

What are layers detecting?

Zeiler and Fergus, 2013

https://www.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

(=

Zeiler and Fergus, 2013

https://www.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

What are layers detectinge

Zeiler and Fergus, 2013

https://www.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

To use networks yourselt...

» Neural networks have had most success
when the data is;

» | agbeled

» Exhaustive and low-level (e.g. images,
audio)

» Substantial in quantity

= From a realm with unclear or
underperformant theory-driven features

» More computing power (on GPUs) helps

» |imited datae
No problem: use fransfer learning

Stage 1 =

Stage 4 —

Stags 5 =

Stage 65—

Stage 7

Stage d —

Ohutput —

1000x1x1

[nput
3x231x131

1196 conw, fileers: 11x11, stride 4
2] Relll

4] 256 conv. filters: 5x3, stride 1
5] Relll

7)Fadl
8] 512 conv, filvers: 3x3, stride 1
9] Rell

| 512x12x12 I

10) Pad 1
11) 1024 conv. filters: 3x3, stride 1
12) Rell

| 1024x12x12 I

13)Pad1
14] 1024 conw. flters; 5x3, stride 1
15) ReLU

17) 3072 conv, filters: éuf, stride |
18) RelU

3072xlxl I

19) Fully connected w4095 weights
20) ReLll

Srage 7.5 —

40%8x1xl

21) Fully connected w 1000 weights g

22) Sofmax

Cutpat —
1000x1x1

Left: Original network

1-1%] Owerfeat featurs extraction

Right: Retraining the classifier head

Software

» Caffe (UC Berkeley):
the original; C++ with Python & MATLAB bindings; underdocumented; being
revised

» Torch (NYU & IDIAP; Facebook, Google DeepMind):
Lua; easy to convert to GPU; active development

= Theano (Montreal):
Python; symbolic computation; two high level wrappers (Keras, Lasagne)

» TensorFlow (Google):
Python; symbolic computation; multiple high level wrapper (Keras and
others); helpful dashboards; extra parallelism

Fooling images

Stanford CS231N: Nguyen, Yosinski and Clune 2014; Szegedy et al. 2013

http://cs231n.stanford.edu/slides/winter1516_lecture9.pdf
http://arxiv.org/abs/1412.1897
http://arxiv.org/abs/1312.6199

Fooling images

Stanford CS231N: Nguyen, Yosinski and Clune 2014; Szegedy et al. 2013

http://cs231n.stanford.edu/slides/winter1516_lecture9.pdf
http://arxiv.org/abs/1412.1897
http://arxiv.org/abs/1312.6199

Fooling images

] B T 7
7 ; ; | v
s ' A

’ 7 %
{ % § 3
E E i}
£ 3 i 1
F 5 I 3
4 % . g ¥ 4
£ b 7 L 2
d T 2 S 7
i 3 ’ % ¥
i % F 4 5 ¥
: x = s 2

baseball

Stanford CS231N: Nguyen, Yosinski and Clune 2014; Szegedy et al. 2013

http://cs231n.stanford.edu/slides/winter1516_lecture9.pdf
http://arxiv.org/abs/1412.1897
http://arxiv.org/abs/1312.6199

Fooling images

7 3 7 T 7

r 4

7 2 2 2 %

7 T 2 T 7

¥ ¥ § F

s ‘ 4 x|
E S F ¥ ¥
’ : 1 T 7 |
’ b8 2 3

¥ 3 : 2

' 3 X ¥ L]

- X > L b]

4 5 s v 4

% X 7 3 2

+ 5 V4 . K

i » ¥ X ¥

¥ K F 4 h ¥

£ 3 7 LY ’

| * & 3 - > |

baseball ostrich

Stanford CS231N: Nguyen, Yosinski and Clune 2014; Szegedy et al. 2013

http://cs231n.stanford.edu/slides/winter1516_lecture9.pdf
http://arxiv.org/abs/1412.1897
http://arxiv.org/abs/1312.6199

Style transfer

» Content and style of art can
be separated

® |t is possible to keep
underlying content structure
and also approximate style
tendencies

Gatys, Ecker, Bethge 2015; Justin Johnson

http://arxiv.org/abs/1508.06576
https://github.com/jcjohnson/neural-style

Image captioning

"little girl is eating piece of cake."

Andrej Karpathy

http://cs.stanford.edu/people/karpathy/deepimagesent/

Image captioning

"baseball player is throwing ball
in game."

"little girl is eating piece of cake."

Andrej Karpathy

http://cs.stanford.edu/people/karpathy/deepimagesent/

Image captioning

"little girl is eating piece of cake."

: : > T e S
"baseball player is throwing ball
in game."

"woman is holding bunch of
bananas."

Andrej Karpathy

http://cs.stanford.edu/people/karpathy/deepimagesent/

Image captioning

= 23 :;.M . > .
"baseball player is throwing ball "woman is holding bunch of
in game." bananas."

"a cat is sitting on a couch with a
remote control."

Andrej Karpathy

http://cs.stanford.edu/people/karpathy/deepimagesent/

Image captioning

"woman is holding bunch of
in game." bananas."

"a cat is sitting on a couch with a "a young boy is holding a
remote control." baseball bat."

Andrej Karpathy

http://cs.stanford.edu/people/karpathy/deepimagesent/

Google DeepDream

» Whatever the image looks like in @
region, make it look more like that

®» DeepDream goes to the grocery
store:
hitps.//www.youtube.com/waiche
v=DgPaCWJL/XI

Google Research; Stanford CS 231N

https://www.youtube.com/watch?v=DgPaCWJL7XI
http://googleresearch.blogspot.com/2015/06/inceptionism-going-deeper-into-neural.html
http://cs231n.stanford.edu/slides/winter1516_lecture9.pdf

Further resources

» To learn more:
» hitp://cs231n.stanford.edu/ [texts, slides, YouTube videos, homework]

®» Nhitps://www.coursera.org/course/neuralnets [more math, less vision]

» Soffware:
» hitps://qithub.com/torch

» hitps://www.tensorflow.org/

» Nhitp://caffe.berkeleyvision.org/

» hitp://deeplearning.net/software/theano/

®» |mageNet
» Nhitp://www.image-net.org/

» Caffe model zoo:
®» hitps://qithub.com/BVLC/caffe/wiki/Model-Zoo

http://cs231n.stanford.edu/
https://www.coursera.org/course/neuralnets
https://github.com/torch
https://www.tensorflow.org/
http://caffe.berkeleyvision.org/
http://deeplearning.net/software/theano/
http://www.image-net.org/
https://github.com/BVLC/caffe/wiki/Model-Zoo

At 1:00, you are now able fo...

» Competence (able to perform on your own, with varying levels of perfection):

» Understand how neural networks extend linear classification, and have some intuition

for how and why they are more powerful

» Know when a neural network variant might be appropriate for your problem and why

=» Know how to get more help

= Exposure (aware):

Articulate some of the challenges in computer vision

Articulate the broad strokes of gradient descent

Recognize the phrase “backpropagation” (it is how we train networks)
Recognize the phrase “convolutional neural network” (it's state-of-the-art vision)

Express the history of neural networks and some reasons deep learning has been
causing so much excitement in recent years

Be familiar with tools that make networks easier to use: tfransfer learning + software

Recall images from a handful of cool recent papers

