
A brief intro to

computer vision and

neural networks
28 April 2016

Pamela Toman

1

At 1:00, you will be able to…

 Competence (able to perform on your own, with varying levels of perfection):

 Understand how neural networks extend linear classification, and have some intuition
for how and why they are more powerful

 Know when a neural network variant might be appropriate for your problem and why

 Know how to get more help

 Exposure (aware):

 Articulate some of the challenges in computer vision

 Articulate the broad strokes of gradient descent

 Recognize the phrase “backpropagation” (it is how we train networks)

 Recognize the phrase “convolutional neural network” (it’s state-of-the-art for vision)

 Express the history of neural networks and some reasons deep learning has been
causing so much excitement in recent years

 Be familiar with tools that make networks easier to use: transfer learning + software

 Recall images from a handful of cool recent papers

2

Let’s chat…

How might we predict

a person’s citizenship?

3

Linear classification4

Linear classification4

N

N = number of examples (people: Yeltsin, Swift, Bieber, Obama, you, …)

F = number of features (characteristics: age of first vote, TV watched/year,

alcohol consumed/year, family size, years of education, …)

F

X

Linear classification4

N

N = number of examples (people: Yeltsin, Swift, Bieber, Obama, you, …)

F = number of features (characteristics: age of first vote, TV watched/year,

alcohol consumed/year, family size, years of education, …)

F

X

1

N Y≈

Linear classification4

N

N = number of examples (people: Yeltsin, Swift, Bieber, Obama, you, …)

F = number of features (characteristics: age of first vote, TV watched/year,

alcohol consumed/year, family size, years of education, …)

F

F

C

●X W

1

N Y≈

C = number of classes (countries: Russia, Canada, USA, China, …)

Linear classification4

N

N = number of examples (people: Yeltsin, Swift, Bieber, Obama, you, …)

F = number of features (characteristics: age of first vote, TV watched/year,

alcohol consumed/year, family size, years of education, …)

F

F

C

● N

C

=X W S

1

N Y≈

C = number of classes (countries: Russia, Canada, USA, China, …)

Linear classification4

N

N = number of examples (people: Yeltsin, Swift, Bieber, Obama, you, …)

F = number of features (characteristics: age of first vote, TV watched/year,

alcohol consumed/year, family size, years of education, …)

F

F

C

● N

C

=X W S

1

N Ŷ

1

N Y≈

C = number of classes (countries: Russia, Canada, USA, China, …)

Linear classification4

N

N = number of examples (people: Yeltsin, Swift, Bieber, Obama, you, …)

F = number of features (characteristics: age of first vote, TV watched/year,

alcohol consumed/year, family size, years of education, …)

F

F

C

● N

C

=X W S

1

N Ŷ

1

N Y≈

C = number of classes (countries: Russia, Canada, USA, China, …)

b
F

+

1

Linear classification4

N

N = number of examples (people: Yeltsin, Swift, Bieber, Obama, you, …)

F = number of features (characteristics: age of first vote, TV watched/year,

alcohol consumed/year, family size, years of education, …)

F

F

C

● N

C

=X W S

1

N Ŷ

1

N Y≈

C = number of classes (countries: Russia, Canada, USA, China, …)

𝑓 𝑋;𝑊, 𝑏 = 𝑋𝑊 + 𝑏

b
F

+

1

Now a challenge…5

Now a challenge…5

Now a challenge…5

Now a challenge…

How do we label images?

5

Images as input examples6

Images as input examples6

128

width

128

height

X Y

“cat”

Images as input examples6

128

width

128

height

…1

height

128*128*3 = 49152

width (flattened)

X Y

“cat”

Images as input examples6

128

width

128

height

…1

height

128*128*3 = 49152

width (flattened)

128

width

128

height

X Y

…1

height

128*128*3 = 49152

width (flattened)

“cat”

“cat”

Images as input examples6

128

width

128

height

…1

height

128*128*3 = 49152

width (flattened)

128

width

128

height

128

width

128

height

X Y

…1

height

128*128*3 = 49152

width (flattened)

“cat”

“cat”

…1

height

128*128*3 = 49152

width (flattened)

“bicycle”

Images as input examples7

…

X
…

…

F = 49152

…

N

Y
“cat”
“cat”

“bicycle”
…N

1

How do we figure out the weights W

and offsets b?

8

…

X
…

…

…

Y
“cat”
“cat”

“bicycle”
…● ≈+

W b

Gradient descent to the rescue!

 Define a “loss function”

 Guess at all the weights W and bias offsets b

 Seek iterative improvement

9

Lou Piote

http://www.loupiote.com/photos/88562700.shtml

Gradient descent to the rescue!

 Define a “loss function”

 Guess at all the weights W and bias offsets b

 Seek iterative improvement

9

Lou Piote

http://www.loupiote.com/photos/88562700.shtml

Gradient descent to the rescue!

 Define a “loss function”

 Guess at all the weights W and bias offsets b

 Seek iterative improvement

10

Cargo Collective

http://cargocollective.com/benmakesphotos/Foggy-Mountains

Gradient descent to the rescue!

 Define a “loss function”

 Guess at all the weights W and bias offsets b

 Seek iterative improvement

10

Cargo Collective

http://cargocollective.com/benmakesphotos/Foggy-Mountains

Gradient descent to the rescue!

 Define a “loss function”

 Guess at all the weights W and bias offsets b

 Seek iterative improvement

11

1. Apply 𝑓 to (X, W, b) to produce the current loss

2. For each parameter (value in W or b),

calculate how the loss responds to change in that param

(this is the gradient ≈ derivative)

3. Update each param with a tiny step away from higher loss

4. Repeat

Gradient descent to the rescue!

 Define a “loss function”

 Guess at all the weights W and bias offsets b

 Seek iterative improvement

11

Most efficient to

use calculus

1. Apply 𝑓 to (X, W, b) to produce the current loss

2. For each parameter (value in W or b),

calculate how the loss responds to change in that param

(this is the gradient ≈ derivative)

3. Update each param with a tiny step away from higher loss

4. Repeat

Gradient descent to the rescue!

 Define a “loss function”

 Guess at all the weights W and bias offsets b

 Seek iterative improvement

11

Most efficient to

use calculus

1. Apply 𝑓 to (X, W, b) to produce the current loss

2. For each parameter (value in W or b),

calculate how the loss responds to change in that param

(this is the gradient ≈ derivative)

3. Update each param with a tiny step away from higher loss

4. Repeat

Gradient descent to the rescue!

 Define a “loss function”

 Guess at all the weights W and bias offsets b

 Seek iterative improvement

11

* Not actually the best method for convex problems like linear regression

Most efficient to

use calculus

1. Apply 𝑓 to (X, W, b) to produce the current loss

2. For each parameter (value in W or b),

calculate how the loss responds to change in that param

(this is the gradient ≈ derivative)

3. Update each param with a tiny step away from higher loss

4. Repeat

Example:

Sample

dataset

12

Data:

Stanford CS231N

http://cs231n.stanford.edu/slides/winter1516_lecture2.pdf

Example:

Sample

dataset

12

Learned weights (templates):

Data:

& results of

training

Stanford CS231N

http://cs231n.stanford.edu/slides/winter1516_lecture2.pdf

Example:

Sample

dataset

12

Learned weights (templates):

Data:

& results of

training

Achieves ~40%
accuracy

Stanford CS231N

http://cs231n.stanford.edu/slides/winter1516_lecture2.pdf

Neural networks let us do better

 More expressive power than linear classification in two major ways:

 Hierarchical decisions: composition into deeper (not “deep”) networks

 Non-linear relationships: threshold at 0 with ReLUs (rectified linear units)

 Trade-off: estimating more parameters requires more data, memory, time

13

Neural networks let us do better

 More expressive power than linear classification in two major ways:

 Hierarchical decisions: composition into deeper (not “deep”) networks

 Non-linear relationships: threshold at 0 with ReLUs (rectified linear units)

 Trade-off: estimating more parameters requires more data, memory, time

13

inputs weightsclasses classes

Neural networks let us do better

 More expressive power than linear classification in two major ways:

 Hierarchical decisions: composition into deeper (not “deep”) networks

 Non-linear relationships: threshold at 0 with ReLUs (rectified linear units)

 Trade-off: estimating more parameters requires more data, memory, time

13

inputs weightsclasses classes

inputs weightshidden_1 threshold at 0

weightshidden_2 threshold at 0

weightshidden_3 threshold at 0 weightsclasses classes

Neural networks let us do better

 More expressive power than linear classification in two major ways:

 Hierarchical decisions: composition into deeper (not “deep”) networks

 Non-linear relationships: threshold at 0 with ReLUs (rectified linear units)

 Trade-off: estimating more parameters requires more data, memory, time

13

inputs weightsclasses classes

inputs weightshidden_1 threshold at 0

weightshidden_2 threshold at 0

weightshidden_3 threshold at 0 weightsclasses classes

𝑓 𝑋;… = 𝑔 ○ ℎ ○ 𝑖 ○ 𝑗 ○ ⋯

Neural networks let us do better

 More expressive power than linear classification in two major ways:

 Hierarchical decisions: composition into deeper (not “deep”) networks

 Non-linear relationships: threshold at 0 with ReLUs (rectified linear units)

 Trade-off: estimating more parameters requires more data, memory, time

13

inputs weightsclasses classes

inputs weightshidden_1 threshold at 0

weightshidden_2 threshold at 0

weightshidden_3 threshold at 0 weightsclasses classes

To estimate the weights, we

use backpropagation. It

simplifies the loss gradient

calculation: we can train

through a series of highly

local, chain-rule based

transformations. Backprop is

clever and neat, but too

mathy for this talk.

𝑓 𝑋;… = 𝑔 ○ ℎ ○ 𝑖 ○ 𝑗 ○ ⋯

Neural networks let us do better

 More expressive power than linear classification in two major ways:

 Hierarchical decisions: composition into deeper (not “deep”) networks

 Non-linear relationships: threshold at 0 with ReLUs (rectified linear units)

 Trade-off: estimating more parameters requires more data, memory, time

13

inputs weightsclasses classes

inputs weightshidden_1 threshold at 0

weightshidden_2 threshold at 0

weightshidden_3 threshold at 0 weightsclasses classes

To estimate the weights, we

use backpropagation. It

simplifies the loss gradient

calculation: we can train

through a series of highly

local, chain-rule based

transformations. Backprop is

clever and neat, but too

mathy for this talk.
Achieves ~55%

accuracy

𝑓 𝑋;… = 𝑔 ○ ℎ ○ 𝑖 ○ 𝑗 ○ ⋯

Convolutional neural networks let us do

even better

14

Convolutional neural networks let us do

even better

 By assuming image data, we get more powerful models for the same cost

14

Convolutional neural networks let us do

even better

 By assuming image data, we get more powerful models for the same cost

 Instead of flattening each training image, we keep its original 3-D form

14

Convolutional neural networks let us do

even better

 By assuming image data, we get more powerful models for the same cost

 Instead of flattening each training image, we keep its original 3-D form

 Instead of 1 huge weight matrix at each layer, instead we have sets of 3-D filters

14

Convolutional neural networks let us do

even better

 By assuming image data, we get more powerful models for the same cost

 Instead of flattening each training image, we keep its original 3-D form

 Instead of 1 huge weight matrix at each layer, instead we have sets of 3-D filters

 Each filter looks at a small spatial region (e.g., 3x3 pixels) and the entire input depth

(e.g., 3 RGB channels at the top layer)

14

Convolutional neural networks let us do

even better

 By assuming image data, we get more powerful models for the same cost

 Instead of flattening each training image, we keep its original 3-D form

 Instead of 1 huge weight matrix at each layer, instead we have sets of 3-D filters

 Each filter looks at a small spatial region (e.g., 3x3 pixels) and the entire input depth

(e.g., 3 RGB channels at the top layer)

 We “convolve” (slide) each filter across the entire image in discrete jumps

 At each place we pause, we calculate a single “activation” value

14

Convolutional neural networks let us do

even better

 By assuming image data, we get more powerful models for the same cost

 Instead of flattening each training image, we keep its original 3-D form

 Instead of 1 huge weight matrix at each layer, instead we have sets of 3-D filters

 Each filter looks at a small spatial region (e.g., 3x3 pixels) and the entire input depth

(e.g., 3 RGB channels at the top layer)

 We “convolve” (slide) each filter across the entire image in discrete jumps

 At each place we pause, we calculate a single “activation” value

 We compile the activation values into the output of the layer

14

Convolutional neural networks let us do

even better

 By assuming image data, we get more powerful models for the same cost

 Instead of flattening each training image, we keep its original 3-D form

 Instead of 1 huge weight matrix at each layer, instead we have sets of 3-D filters

 Each filter looks at a small spatial region (e.g., 3x3 pixels) and the entire input depth
(e.g., 3 RGB channels at the top layer)

 We “convolve” (slide) each filter across the entire image in discrete jumps

 At each place we pause, we calculate a single “activation” value

 We compile the activation values into the output of the layer

 Training learns the weights for each filter that best transform input pixels into
class scores

14

Convolutional neural networks let us do

even better

 By assuming image data, we get more powerful models for the same cost

 Instead of flattening each training image, we keep its original 3-D form

 Instead of 1 huge weight matrix at each layer, instead we have sets of 3-D filters

 Each filter looks at a small spatial region (e.g., 3x3 pixels) and the entire input depth
(e.g., 3 RGB channels at the top layer)

 We “convolve” (slide) each filter across the entire image in discrete jumps

 At each place we pause, we calculate a single “activation” value

 We compile the activation values into the output of the layer

 Training learns the weights for each filter that best transform input pixels into
class scores

14

Diagrams of tensors are hard
(blame physics!)

Convolutional neural networks let us do

even better

 By assuming image data, we get more powerful models for the same cost

 Instead of flattening each training image, we keep its original 3-D form

 Instead of 1 huge weight matrix at each layer, instead we have sets of 3-D filters

 Each filter looks at a small spatial region (e.g., 3x3 pixels) and the entire input depth
(e.g., 3 RGB channels at the top layer)

 We “convolve” (slide) each filter across the entire image in discrete jumps

 At each place we pause, we calculate a single “activation” value

 We compile the activation values into the output of the layer

 Training learns the weights for each filter that best transform input pixels into
class scores

14

Diagrams of tensors are hard
(blame physics!)

Achieves ~80% accuracy

Convolutional neural networks let us do

even better

 By assuming image data, we get more powerful models for the same cost

 Instead of flattening each training image, we keep its original 3-D form

 Instead of 1 huge weight matrix at each layer, instead we have sets of 3-D filters

 Each filter looks at a small spatial region (e.g., 3x3 pixels) and the entire input depth
(e.g., 3 RGB channels at the top layer)

 We “convolve” (slide) each filter across the entire image in discrete jumps

 At each place we pause, we calculate a single “activation” value

 We compile the activation values into the output of the layer

 Training learns the weights for each filter that best transform input pixels into
class scores

14

Diagrams of tensors are hard
(blame physics!)

Achieves ~80% accuracy

𝑓 𝑋;… = 𝑔′ ○ ℎ′ ○ 𝑖′ ○ 𝑗′ ○ ⋯

Why do convolutional neural networks

perform better?

 Performs even better than vanilla neural networks:

 Non-linearities provide more freedom to the learning algorithm

 Deeper compositions provide hierarchical recognition

-- “Person” has “face” has “eye” has “roundness”

-- “Cat walking right” and “cat facing camera” can be combined into “cat”

 “Sliding” mean units are re-usable: faster to train, more robust to transformations

 In practice, we use many other tricks too (beyond composing convolutional
layers and ReLUs)

 Still have performance trade-offs in data, memory, time

“Deepness” of learning now matters:
deeper network ⇒ better performance

15

A foray into history & ImageNet

 Early development in ‘60s; some interest in ‘80s

 Mostly scoffed at ‘til ~2010… and then it changed

 Previously only okay performance; neurologists don’t like the parallel

 Recent huge success in image, speech, text recognition

 Newfound success widely attributed to: (a) increased data, (b) increased

processing power, (c) training improvements (e.g., ReLU/thresholding at 0)

16

ILSVRC:
1 million images,
1000 categories

Human: 5.1% (Karpathy 2014)

Convolutional neural networks learn

useful sub-image features

 Filters behave like learned/derived features (auto-derived visual analogues

to “age of first vote”, “TV watched/year”, “family size”, …)

17

Example first-layer filters learned by Krizhevsky et al. 2012 (11x11x3).

Many first-tier computer vision features have this form (“Gabor-like”).

During evaluation, each filter is convolved across the input image to
detect features like horizontal edges, color blobs, textures.

Krizhevsky et al. 2012

http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

What are layers detecting?18

Zeiler and Fergus, 2013

https://www.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

What are layers detecting?19

Zeiler and Fergus, 2013

https://www.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

What are layers detecting?20

Zeiler and Fergus, 2013

https://www.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

What are layers detecting?21

Zeiler and Fergus, 2013

https://www.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

What are layers detecting?22

Zeiler and Fergus, 2013

https://www.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

To use networks yourself…

 Neural networks have had most success

when the data is:

 Labeled

 Exhaustive and low-level (e.g. images,

audio)

 Substantial in quantity

 From a realm with unclear or

underperformant theory-driven features

 More computing power (on GPUs) helps

 Limited data?

No problem: use transfer learning

23

Left: Original network
Right: Retraining the classifier head

Software

 Caffe (UC Berkeley):

the original; C++ with Python & MATLAB bindings; underdocumented; being

revised

 Torch (NYU & IDIAP; Facebook, Google DeepMind):

Lua; easy to convert to GPU; active development

 Theano (Montreal):
Python; symbolic computation; two high level wrappers (Keras, Lasagne)

 TensorFlow (Google):

Python; symbolic computation; multiple high level wrapper (Keras and

others); helpful dashboards; extra parallelism

24

Fooling images25

Stanford CS231N; Nguyen, Yosinski and Clune 2014; Szegedy et al. 2013

http://cs231n.stanford.edu/slides/winter1516_lecture9.pdf
http://arxiv.org/abs/1412.1897
http://arxiv.org/abs/1312.6199

Fooling images25

goldfish

Stanford CS231N; Nguyen, Yosinski and Clune 2014; Szegedy et al. 2013

http://cs231n.stanford.edu/slides/winter1516_lecture9.pdf
http://arxiv.org/abs/1412.1897
http://arxiv.org/abs/1312.6199

Fooling images25

goldfish baseball

Stanford CS231N; Nguyen, Yosinski and Clune 2014; Szegedy et al. 2013

http://cs231n.stanford.edu/slides/winter1516_lecture9.pdf
http://arxiv.org/abs/1412.1897
http://arxiv.org/abs/1312.6199

Fooling images25

goldfish ostrichbaseball

Stanford CS231N; Nguyen, Yosinski and Clune 2014; Szegedy et al. 2013

http://cs231n.stanford.edu/slides/winter1516_lecture9.pdf
http://arxiv.org/abs/1412.1897
http://arxiv.org/abs/1312.6199

Style transfer

 Content and style of art can

be separated

 It is possible to keep

underlying content structure

and also approximate style

tendencies

26

Gatys, Ecker, Bethge 2015; Justin Johnson

http://arxiv.org/abs/1508.06576
https://github.com/jcjohnson/neural-style

Image captioning27

Andrej Karpathy

http://cs.stanford.edu/people/karpathy/deepimagesent/

Image captioning27

Andrej Karpathy

http://cs.stanford.edu/people/karpathy/deepimagesent/

Image captioning27

Andrej Karpathy

http://cs.stanford.edu/people/karpathy/deepimagesent/

Image captioning27

Andrej Karpathy

http://cs.stanford.edu/people/karpathy/deepimagesent/

Image captioning27

Andrej Karpathy

http://cs.stanford.edu/people/karpathy/deepimagesent/

Google DeepDream

 Whatever the image looks like in a

region, make it look more like that

 DeepDream goes to the grocery

store:

https://www.youtube.com/watch?

v=DgPaCWJL7XI

28

Google Research; Stanford CS 231N

https://www.youtube.com/watch?v=DgPaCWJL7XI
http://googleresearch.blogspot.com/2015/06/inceptionism-going-deeper-into-neural.html
http://cs231n.stanford.edu/slides/winter1516_lecture9.pdf

Further resources

 To learn more:

 http://cs231n.stanford.edu/ [texts, slides, YouTube videos, homework]

 https://www.coursera.org/course/neuralnets [more math, less vision]

 Software:

 https://github.com/torch

 https://www.tensorflow.org/

 http://caffe.berkeleyvision.org/

 http://deeplearning.net/software/theano/

 ImageNet

 http://www.image-net.org/

 Caffe model zoo:

 https://github.com/BVLC/caffe/wiki/Model-Zoo

29

http://cs231n.stanford.edu/
https://www.coursera.org/course/neuralnets
https://github.com/torch
https://www.tensorflow.org/
http://caffe.berkeleyvision.org/
http://deeplearning.net/software/theano/
http://www.image-net.org/
https://github.com/BVLC/caffe/wiki/Model-Zoo

At 1:00, you are now able to…

 Competence (able to perform on your own, with varying levels of perfection):

 Understand how neural networks extend linear classification, and have some intuition
for how and why they are more powerful

 Know when a neural network variant might be appropriate for your problem and why

 Know how to get more help

 Exposure (aware):

 Articulate some of the challenges in computer vision

 Articulate the broad strokes of gradient descent

 Recognize the phrase “backpropagation” (it is how we train networks)

 Recognize the phrase “convolutional neural network” (it’s state-of-the-art vision)

 Express the history of neural networks and some reasons deep learning has been
causing so much excitement in recent years

 Be familiar with tools that make networks easier to use: transfer learning + software

 Recall images from a handful of cool recent papers

30

