
Microservices for a

Non-Technical Audience
Pamela Toman

January 2017

1

Microservices are decoupled units that

communicate through network APIs

 Microservices apply two core ideas:

 “Decoupling”: no shared knowledge between units

 “Networked communication”: all inter-unit communication happens over web APIs

 Microservice architectures are suites of independently deployable services

 People often call the alternative “a monolith”

(source)

2

http://www.pwc.com/us/en/technology-forecast/2014/cloud-computing/features/assets/th-feature02-figure02.jpg

Spoiler:

Small teams won’t benefit from microservices.

Large teams might.

 Microservices are costly

 The benefits emerge when:

(a) the team is large, and

(b) everyone agrees on well-defined separable units of work

 Recommendations (spoiler):

 Follow best-practices (moderated by need for speed & maintainability);

wait until the monolithic code base naturally suggests the need for microservices

 A humorous rule-of-thumb:

“Divide the number of full-time backend engineers by 5

to get the ideal number of microservices"

3

Decoupling is always beneficial

 “Coupling” is the amount of dependency between two entities

 Strongly coupled systems are expensive and hard to maintain

 To “decouple” components, we redesign to stop making assumptions about
how other entities work internally

 CS principles at play:
separation of concerns, modular design, abstraction, encapsulation

(source) (source)

4

http://e3sparkplugs.com/media/post/img-company-01_img_25.jpg
https://media-elerium.cursecdn.com/avatars/29/732/635850040510997445.jpeg

Forcing all communication to use a

network has ambiguous benefits

 In a monolith, a series of procedure
calls (functions) perform small
amounts of work and return the result

 Calls are processed in real-time

 Code can run without a network

 All code uses the same language; the
code regularly & automatically self-
checks function signatures/data types

 Full history (“what called what?”) is
available locally during debugging

 Microservices encapsulate all this
code, define a text-based API, and
require querying-folks to wrap their
requests for the network & send it

(source)

RPC = “Remote Procedure Call”

(networked communication)

Without

network

5

https://docs.oracle.com/cd/E19455-01/805-7224/6j6q44cgg/index.html

Visualizing microservices

 Traditional architectures have loosely coupled parts,

which communicate with each other at exposed touchpoints

 Microservices have multiple instantiations of very small units,

which communicate with any other units they want in a very naïve way

(source)

6

http://www.pwc.com/us/en/technology-forecast/2014/cloud-computing/features/assets/th-feature02-figure02.jpg

A loose coupling analogy:

phone numbers

 A traditional architecture is like a group of people sitting together

 People have roles

 But sometimes people take on another role

 And sometimes people rely on someone’s internal, incomplete state

(say, notes) -- and everyone knows this is not ideal

 A microservices architecture has separate buildings, each with one

external phone number

 Each building has a single purpose

 Each phone call exchanges only needed information

 A call triggers a flurry of work

 Once the answer is available, the building calls back with it

 Microservices succeed when the interplay of work units are well-

defined – and in those cases, extending for higher demand is easy

(source)

7

https://s-media-cache-ak0.pinimg.com/originals/ec/1e/e5/ec1ee5a7c25d5276250ee4794a1cf36f.jpg

Technical and organizational trade-offs

8

Microservices increase the friction for

cheating on best practices

 Microservice structure encourages following these universal best practices:

 Loose coupling / proper partitioning (resiliency to failure)

 No leaking of implementation details

 Careful validation of all inputs

 Simple, narrow, flat APIs between components

 Independence of parts through API versioning

 It hurts a lot more when microservices don’t follow these practices

 Following these practices always comes at an initial cost (-3x?) and offers
future savings (+5x?) in time and money; the project manager and architect
need to balance the trade-off

(source)

9

http://booleanstrings.com/wp-content/uploads/2011/02/best-practice1.jpg

Microservices introduce unique

technical benefits & downsides

Benefits

 Teams fully own their products

(deployment, scaling, performance

monitoring, error handling,

database, migrating to new

libraries or languages, …)

 Teams must code to the possibility

that dependencies are unavailable

 Project can scale better on the

same number of machines

Downsides

 Teams write more code (e.g., tests

for interface, backup plans for

unavailable services)

 It is harder to debug problems that

span microservices

 Unless the services are well-

designed, the code will be slow

 Refactoring is more painful

 Deployment & monitoring workload

skyrockets (~10x ?)

Ambiguous: Each microservice can be written in a different language.

(source)

10

http://otham.co.za/wp-content/uploads/2015/08/technical-consultancy-services.jpg

(source)

11

https://peter.bourgon.org/a-case-for-microservices/

Microservices introduce unique

organizational benefits and downsides

Benefits

 Teams fully own their products
(deployment, scaling, performance
monitoring, error handling, database,
migrating to new libraries or
languages, …)

 Encourages the architecture to be
carefully considered, clarified and
made visible; links get explicitly
discussed in meetings; no man’s land
of responsibility disappears

 Especially helpful if the team is
distributed – communicating through
APIs may be more effective than
calls/Slack/in person visits

Downsides

 Microservice architectures have
higher fixed costs

 Each team size must be large enough
to not allow a single point of failure

(source)
12

http://www.referenceforbusiness.com/photos/organizational-structure-0.jpg

Ideal microservices fit the

organization & needs

 Microservices are a way

to clearly distribute

ownership & autonomy

 Teams should be around

4-6 people

 Microservices should be

standalone pieces that

emerge from a working

system

(source)

13

http://www.americansouthwest.net/colorado/rocky-mountain/chasm-lake2_l.html

Knowing when to pull the trigger

14

Where do microservices come from?

 Anecdotally….

 Almost all successful

microservice stories

started with a “too

big” monolith
Netflix, SoundCloud, Twitter, …

 Starting from scratch

with microservices

leads to trouble
a graveyard of failed startups…

(source)

15

https://martinfowler.com/bliki/MonolithFirst.html

Who needs microservices?
(from an October 2015 blog)

(source)
16

https://www.stavros.io/posts/microservices-cargo-cult/

Final review:

Small teams won’t benefit from microservices.

Large teams might.

 Microservices apply two core ideas:

 “Decoupling”: no shared knowledge between units
(always good!)

 “Networked communication”: all inter-unit communication happens over web APIs
(ambiguous)

 Microservices facilitate unit-level complete ownership & autonomy for larger teams

 Microservices are costly for small teams and small products

 Recommendations:

 Follow best-practices (moderated by need for speed & maintainability);
wait until the monolithic code base naturally suggests the need for microservices

 A humorous rule-of-thumb:
“Divide the number of full-time backend engineers by 5
to get the ideal number of microservices"

17

