Microservices for a
Non-Technical Audience

Pamela Toman

January 2017

Microservices are decoupled units that
communicate through network APIs

» Microservices apply two core ideas:

» “Decoupling”: no shared knowledge between units

» “Networked communication”: all inter-unit communication happens over web APIs
» Microservice architectures are suites of independently deployable services

» People often call the alternative “a monolith”

‘
PIE Ve)
.‘gé".'\/:'d‘ ’,
S5 'z“.:?\\t
A O L AR
S R
& o a i) b e A S
e . ‘\::f;%,
v SN
g 5

!
-"\ ¥ "':‘_",.
g/

‘.
B s

http://www.pwc.com/us/en/technology-forecast/2014/cloud-computing/features/assets/th-feature02-figure02.jpg

Spoiler:

Small teams won’t benefit from microservices.
Large teams might.

Microservices are costly

The benefits emerge when:
(a) the team is large, and

(b) everyone agrees on well-defined separable units of work

» Recommendations (spoiler):

» Follow best-practices (moderated by need for speed & maintainability);
wait until the monolithic code base naturally suggests the need for microservices
» A humorous rule-of-thumb:

“Divide the number of full-time backend engineers by 5
to get the ideal number of microservices”

Decoupling is always beneficial

» “Coupling” is the amount of dependency between two entities

(source) (source)
» Strongly coupled systems are expensive and hard to maintain

» To “decouple” components, we redesign to stop making assumptions about
how other entities work internally

» CS principles at play:
separation of concerns, modular design, abstraction, encapsulation

http://e3sparkplugs.com/media/post/img-company-01_img_25.jpg
https://media-elerium.cursecdn.com/avatars/29/732/635850040510997445.jpeg

Forcing all communication to use a
network has ambiguous benefits

RPC = “Remote Procedure Call”

. » In a monolith, a series of procedure
(networked communication)

calls (functions) perform small
Time HOSTA HOSTB amounts of work and return the result

» Calls are processed in real-time

» Code can run without a network

Client Searvice R
program daemon Without » All code uses the same language; the
1 RPC call network code regularly & automatically self-

Invoke checks function signatures/data types

servi

y Call service

» Full history (“what called what?”) is
available locally during debugging

Service
executes

i

Return answer

» Microservices encapsulate all this

Request
— W"‘ﬁ“ﬂ“! code, define a text-based API, and
Client require querying-folks to wrap their
| chrinuee requests for the network & send-it

(source) .

https://docs.oracle.com/cd/E19455-01/805-7224/6j6q44cgg/index.html

Visualizing microservices

» Traditional architectures have loosely coupled parts,
which communicate with each other at exposed touchpoints

» Microservices have multiple instantiations of very small units,
which communicate with any other units they want in a very naive way

Traditional SOA Microservices
Looser coupling Decoupled
= o
/i, v . : "-c.aw O
@ @ i @ :’:3‘ o 8
& =3 o
N m
: ¢ 3 !) \G

http://www.pwc.com/us/en/technology-forecast/2014/cloud-computing/features/assets/th-feature02-figure02.jpg

A traditional architecture is like a group of people sitting together
People have roles
But sometimes people take on another role

And sometimes people rely on someone’s internal, incomplete state
(say, notes) -- and everyone knows this is not ideal

A microservices architecture has separate buildings, each with one
external phone number

Each building has a single purpose
Each phone call exchanges only needed information
A call triggers a flurry of work

Once the answer is available, the building calls back with it

Microservices succeed when the interplay of work units are well-
defined - and in those cases, extending for higher demand is easy

https://s-media-cache-ak0.pinimg.com/originals/ec/1e/e5/ec1ee5a7c25d5276250ee4794a1cf36f.jpg

‘I

lechnical and organizational trade-offs

Microservices increase the friction for
cheating on best practices

» Microservice structure encourages following these universal best practices:
» Loose coupling / proper partitioning (resiliency to failure

No leaking of implementation details

= AN
Careful validation of all inputs @ v
Simple, narrow, flat APls between components §§ S
/\

vV v. v Y

Independence of parts through API versioning

» It hurts a lot more when microservices don’t follow these practices

» Following these practices always comes at an initial cost (-3x?) and offers
future savings (+5x?) in time and money; the project manager and architect
need to balance the trade-off

http://booleanstrings.com/wp-content/uploads/2011/02/best-practice1.jpg

Microservices introduce unique
technical benefits & downsides

Benefits

» Teams fully own their products
(deployment, scaling, performance
monitoring, error handling,
database, migrating to new
libraries or languages, ...)

» Teams must code to the possibility
that dependencies are unavailable

» Project can scale better on the
same number of machines

Ambiguous: Each microservice can be written in a different language.

v

=

Downsides

Teams write more code (e.g., tests
for interface, backup plans for
unavailable services)

It is harder to debug problems that
span microservices

Unless the services are well-
designed, the code will be slow

Refactoring is more painful

Deployment & monitoring workload
skyrockets (~10x ?)

http://otham.co.za/wp-content/uploads/2015/08/technical-consultancy-services.jpg

g Honest Status Page £x L Follow

@honest_update

We replaced our monolith with micro services

so that every outage could be more like a
murder mystery.

e tws WENETOBES

1:10 AM - 8 Oct 2015

4 3 =

(source)

https://peter.bourgon.org/a-case-for-microservices/

Microservices introduce unique
organizational benefits and downsides

Benefits Downsides
» Teams fully own their products » Microservice architectures have
(deployment, scaling, performance higher fixed costs

monitoring, error handling, database,
migrating to new libraries or
languages, ...)

Each team size must be large enough
to not allow a single point of failure

» Encourages the architecture to be
carefully considered, clarified and
made visible; links get explicitly
discussed in meetings; no man’s land
of responsibility disappears

» Especially helpful if the team is
distributed - communicating through
APls may be more effective than
calls/Slack/in person visits

(source)

http://www.referenceforbusiness.com/photos/organizational-structure-0.jpg

Microservices are a way
to clearly distribute
ownership & autonomy

Teams should be around
4-6 people

Microservices should be
standalone pieces that
emerge from a working
system

(source)

http://www.americansouthwest.net/colorado/rocky-mountain/chasm-lake2_l.html

Knowing when to pull the trigger

Where do microservices come from?

Going directly to a
microservices
architecture is risky
» Anecdotally.... *
3 é
» Almost all successful

microservice stories
started with a “too l

big” monolith
Netflix, SoundCloud, Twitter, ...

Continue breaking out
services as your knowledge
of boundaries and service

management increases

» Starting from scratch
. . . A monolith allows you to
with microservices .
explore both the complexity

a graveyard of failed startups...

As complexity rises start
component boundaries breaking out some

microservices

https://martinfowler.com/bliki/MonolithFirst.html

Who needs microservices?
(from an October 2015 blog)

:

Are you 100%
— positively sure you
need microservices? \
OH GOD YES if |
have to change
| think so? anything on this
monolith | will kill
myself
v l
YOU DON'T NEED
MICROSERVICES! You need
Enjoy all the advantages microservices.

your monolith brings.

(source)

https://www.stavros.io/posts/microservices-cargo-cult/

Traditional SOA

Looser coupling

Final review:

Small teams won’t benefit from microservices.
Large teams might.

Microservices
Decoupled

» Microservices apply two core ideas:

» “Decoupling”: no shared knowledge between units
(always good!)

» “Networked communication”: all inter-unit communication happens over web APIs
(ambiguous)

» Microservices facilitate unit-level complete ownership & autonomy for larger teams
» Microservices are costly for small teams and small products
» Recommendations:

» Follow best-practices (moderated by need for speed & maintainability);
wait until the monolithic code base naturally suggests the need for microservices

» A humorous rule-of-thumb:
“Divide the number of full-time backend engineers by 5
to get the ideal number of microservices”

