
Microservices for a

Non-Technical Audience
Pamela Toman

January 2017

1

Microservices are decoupled units that

communicate through network APIs

 Microservices apply two core ideas:

 “Decoupling”: no shared knowledge between units

 “Networked communication”: all inter-unit communication happens over web APIs

 Microservice architectures are suites of independently deployable services

 People often call the alternative “a monolith”

(source)

2

http://www.pwc.com/us/en/technology-forecast/2014/cloud-computing/features/assets/th-feature02-figure02.jpg

Spoiler:

Small teams won’t benefit from microservices.

Large teams might.

 Microservices are costly

 The benefits emerge when:

(a) the team is large, and

(b) everyone agrees on well-defined separable units of work

 Recommendations (spoiler):

 Follow best-practices (moderated by need for speed & maintainability);

wait until the monolithic code base naturally suggests the need for microservices

 A humorous rule-of-thumb:

“Divide the number of full-time backend engineers by 5

to get the ideal number of microservices"

3

Decoupling is always beneficial

 “Coupling” is the amount of dependency between two entities

 Strongly coupled systems are expensive and hard to maintain

 To “decouple” components, we redesign to stop making assumptions about
how other entities work internally

 CS principles at play:
separation of concerns, modular design, abstraction, encapsulation

(source) (source)

4

http://e3sparkplugs.com/media/post/img-company-01_img_25.jpg
https://media-elerium.cursecdn.com/avatars/29/732/635850040510997445.jpeg

Forcing all communication to use a

network has ambiguous benefits

 In a monolith, a series of procedure
calls (functions) perform small
amounts of work and return the result

 Calls are processed in real-time

 Code can run without a network

 All code uses the same language; the
code regularly & automatically self-
checks function signatures/data types

 Full history (“what called what?”) is
available locally during debugging

 Microservices encapsulate all this
code, define a text-based API, and
require querying-folks to wrap their
requests for the network & send it

(source)

RPC = “Remote Procedure Call”

(networked communication)

Without

network

5

https://docs.oracle.com/cd/E19455-01/805-7224/6j6q44cgg/index.html

Visualizing microservices

 Traditional architectures have loosely coupled parts,

which communicate with each other at exposed touchpoints

 Microservices have multiple instantiations of very small units,

which communicate with any other units they want in a very naïve way

(source)

6

http://www.pwc.com/us/en/technology-forecast/2014/cloud-computing/features/assets/th-feature02-figure02.jpg

A loose coupling analogy:

phone numbers

 A traditional architecture is like a group of people sitting together

 People have roles

 But sometimes people take on another role

 And sometimes people rely on someone’s internal, incomplete state

(say, notes) -- and everyone knows this is not ideal

 A microservices architecture has separate buildings, each with one

external phone number

 Each building has a single purpose

 Each phone call exchanges only needed information

 A call triggers a flurry of work

 Once the answer is available, the building calls back with it

 Microservices succeed when the interplay of work units are well-

defined – and in those cases, extending for higher demand is easy

(source)

7

https://s-media-cache-ak0.pinimg.com/originals/ec/1e/e5/ec1ee5a7c25d5276250ee4794a1cf36f.jpg

Technical and organizational trade-offs

8

Microservices increase the friction for

cheating on best practices

 Microservice structure encourages following these universal best practices:

 Loose coupling / proper partitioning (resiliency to failure)

 No leaking of implementation details

 Careful validation of all inputs

 Simple, narrow, flat APIs between components

 Independence of parts through API versioning

 It hurts a lot more when microservices don’t follow these practices

 Following these practices always comes at an initial cost (-3x?) and offers
future savings (+5x?) in time and money; the project manager and architect
need to balance the trade-off

(source)

9

http://booleanstrings.com/wp-content/uploads/2011/02/best-practice1.jpg

Microservices introduce unique

technical benefits & downsides

Benefits

 Teams fully own their products

(deployment, scaling, performance

monitoring, error handling,

database, migrating to new

libraries or languages, …)

 Teams must code to the possibility

that dependencies are unavailable

 Project can scale better on the

same number of machines

Downsides

 Teams write more code (e.g., tests

for interface, backup plans for

unavailable services)

 It is harder to debug problems that

span microservices

 Unless the services are well-

designed, the code will be slow

 Refactoring is more painful

 Deployment & monitoring workload

skyrockets (~10x ?)

Ambiguous: Each microservice can be written in a different language.

(source)

10

http://otham.co.za/wp-content/uploads/2015/08/technical-consultancy-services.jpg

(source)

11

https://peter.bourgon.org/a-case-for-microservices/

Microservices introduce unique

organizational benefits and downsides

Benefits

 Teams fully own their products
(deployment, scaling, performance
monitoring, error handling, database,
migrating to new libraries or
languages, …)

 Encourages the architecture to be
carefully considered, clarified and
made visible; links get explicitly
discussed in meetings; no man’s land
of responsibility disappears

 Especially helpful if the team is
distributed – communicating through
APIs may be more effective than
calls/Slack/in person visits

Downsides

 Microservice architectures have
higher fixed costs

 Each team size must be large enough
to not allow a single point of failure

(source)
12

http://www.referenceforbusiness.com/photos/organizational-structure-0.jpg

Ideal microservices fit the

organization & needs

 Microservices are a way

to clearly distribute

ownership & autonomy

 Teams should be around

4-6 people

 Microservices should be

standalone pieces that

emerge from a working

system

(source)

13

http://www.americansouthwest.net/colorado/rocky-mountain/chasm-lake2_l.html

Knowing when to pull the trigger

14

Where do microservices come from?

 Anecdotally….

 Almost all successful

microservice stories

started with a “too

big” monolith
Netflix, SoundCloud, Twitter, …

 Starting from scratch

with microservices

leads to trouble
a graveyard of failed startups…

(source)

15

https://martinfowler.com/bliki/MonolithFirst.html

Who needs microservices?
(from an October 2015 blog)

(source)
16

https://www.stavros.io/posts/microservices-cargo-cult/

Final review:

Small teams won’t benefit from microservices.

Large teams might.

 Microservices apply two core ideas:

 “Decoupling”: no shared knowledge between units
(always good!)

 “Networked communication”: all inter-unit communication happens over web APIs
(ambiguous)

 Microservices facilitate unit-level complete ownership & autonomy for larger teams

 Microservices are costly for small teams and small products

 Recommendations:

 Follow best-practices (moderated by need for speed & maintainability);
wait until the monolithic code base naturally suggests the need for microservices

 A humorous rule-of-thumb:
“Divide the number of full-time backend engineers by 5
to get the ideal number of microservices"

17

