
A Brief Introduction to

Reinforcement Learning
SAIL ON – 27 MAY 2017

PTOMAN@STANFORD.EDU

1

mailto:ptoman@stanford.edu

At 8:00 pm, you will be able to…

 Competence (able to perform on your own, with varying levels of perfection):

 Describe how reinforcement learning works and how RL differs from supervised learning

 Diagnose when RL vs. supervised learning is appropriate for a problem

 Know that we can model the quality of an action with a lookup table or a more complex function
like a neural network; name a weakness of lookup tables that models/functions fix

 Explain an upper confidence bound and why it is better than choosing actions greedily

 Articulate similarities and differences in how reinforcement learning and humans solve problems

 Exposure (aware):

 Be aware of the three major paradigms of machine learning

 Be aware of 1) how we mathematically formalize RL problems, and 2) how we map actual problems
to the formalism

 Have been talked through the Q-learning update rule

 Be familiar with terms from reinforcement learning: agent, timestep, policy, Q-learning, discounting,
discretization, rollout, exploration/exploitation tradeoff, upper confidence bound

 Be familiar with three touchstone RL problems: gridworlds/mazes, cart-pole, Atari games

 Know where to go for additional RL resources and Jupyter notebooks

2

There are three types of machine

learning for AI

3

(source)

 Labeled data

 Direct feedback

 Predict outcome/future

 No labels

 No feedback

 Find hidden structure

 Decision process

 Reward system

 Learn series of actions

https://image.slidesharecdn.com/bsn-tutorial-all-slides-140617043257-phpapp01/95/machine-learning-for-body-sensor-networks-20-638.jpg?cb=1402979762

How is reinforcement learning

special?

 In reinforcement learning, agents take actions

in their environments to maximize rewards

 This approach is based on behaviorist

psychology

 There is no supervisor – only a reward signal

 Feedback is delayed, not instantaneous

 Time really matters (sequential, non-i.i.d. data)

 Agent’s actions affect the subsequent data it
receives

4

Silver, UCL

(source)

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/intro_RL.pdf
https://image.slidesharecdn.com/nextgentalk022015-150211154330-conversion-gate02/95/an-introduction-to-supervised-machine-learning-and-pattern-classification-the-big-picture-8-638.jpg?cb=1423785060

In reinforcement learning,

we receive payoffs

 The reinforcement learning paradigm:

 At timestep t, the agent is in state st.

 It receives observation ot.

 It chooses action at.

 After its action:

 the agent is in the new state st+1

 it also receives reward rt+1

 Then the agent receives a new observation ot+1….

5

Silver, UCL

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/intro_RL.pdf

Agents learn to maximize rewards

 The reward rt is a feedback signal

 It indicates how well the agent is doing at time t

 The agent’s job is to maximize rewards

 RL is based on the reward hypothesis:

All goals can be described by

the maximization of cumulative reward.

(Do you agree?)

6

Silver, UCL

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/intro_RL.pdf

What approach should we use?

Which approach(es) can
we choose if we want to….
1. Fly stunt maneuvers in an

airplane

2. Transcribe speech

3. Manage an investment
portfolio

4. Choose what ad to show
someone

5. Rank potentially good-fit
colleges for a student

6. Identify a treatment for a sick
patient

7. Make a humanoid robot walk

7

Silver, UCL

Our (current) toolkit:

• reinforcement learning

• supervised learning

• classification
(Naïve Bayes, neural networks)

• regression
(linear regression, neural networks)

source

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/intro_RL.pdf
https://s-media-cache-ak0.pinimg.com/736x/87/2c/bc/872cbcc7994299a36390278dea1577e9.jpg

Agents make sequential

(hopefully optimal) decisions

 The agent’s goal: Choose actions that maximize total future rewards

 “Solving” a RL problem means “building an agent that acts

optimally”

 Why is this hard?

 Actions may have long-term consequences

 Reward may be delayed

 We may want to sacrifice immediately to get longer-term reward

8

One way to solve a RL problem:

Q-learning

 Q-learning estimates the “quality” of taking action at from state st

 Q is a matrix that estimates quality

 Q-learning applied to a simple gridworld

9

Q-learning Algorithm
1. Initialize a matrix Q(s,a)

2. Repeat (until convergence):

1. Given st, choose an at by using Q

2. Take action at

3. Observe new state st+1 and reward rt+1

4. Update Q(st, at)

5. Set st = st+1

https://www.youtube.com/watch?v=R88CiN7dTZc

Value iteration

update rule

 The Q-learning update rule:

 What is going on here?

 We increase the quality of the (at , st) pair

 We use the amount of change, mediated by the learning rate αt

 The amount of change reflects the just-learned quality of landing in st+1:
the immediate reward rt+1 plus our estimate of how useful being in st+1 is for getting
even more rewards in the future

 What is this gamma γ?

10

Q-learning Algorithm
1. Initialize a matrix Q(s,a)

2. Repeat (until convergence):

1. Given st, choose an at by using Q

2. Take action at

3. Observe new state st+1 and reward rt+1

4. Update Q(st, at)

5. Set st = st+1

Discounting (γ)

 Would you rather have $10 now or in one month?

 People (and algorithms) value receiving the same good sooner
more than they value receiving it later

 The discount factor gamma trades off the importance of sooner

versus later rewards

 Gamma must be between 0 and 1; it’s usually ~0.9 or ~0.99

 What happens if we don’t have gamma?

11

How do we build a policy?

 Let’s say from state st , we have the following row of Q:

 What should the agent’s policy be?
(With what probability should it take each action?)

12

Q-learning Algorithm
1. Initialize a matrix Q(s,a)

2. Repeat (until convergence):

1. Given st, choose an at by using Q

2. Take action at

3. Observe new state st+1 and reward rt+1

4. Update Q(st, at)

5. Set st = st+1

Up Down Left Right

0.7 0.6 0.8 0.78

Exploration vs. exploitation

 There is a tradeoff between exploration and exploitation

 Exploration: learn more information about the environment

 Exploitation: exploit known information to maximize reward

 What are some real-life examples?

 Sometimes we have principled methods

to make this tradeoff

 Sometimes we use heuristics

 Given Q estimates at right, what should agent do?

13

Confidence bounds are more

informative than points

 It is common to use the Upper Confidence Bound (UCB)

 UCB balances exploration and exploitation:

 Actions we know little about have huge confidence bounds,
so by UCB, they look great – we explore them

 Whenever we try an action, our confidence bounds shrink:
we become more and more sure of its true quality

 Eventually the bounds are pretty tight, and the agent
consistently exploits the optimal action

 Other options:

 Risk-averse problems might want best Lowest Conf. Bound

 A greedy approach is to use the best single point (mean)

 “Dominated” options are worse than the alternatives no
matter how we slice it

14

Introduction to cart-pole

 Consider cart-pole:

 Goal: Balance the pendulum on the cart

 Observations are in 4-D space: position, velocity, angle, angular velocity

 Actions are in 2-D space: move cart right (+1), move cart left (-1)

 Rewards: +1 for every timestep the pole does not fall

 How can we use Q-learning for this problem?

15

What options do we have for

getting Q?

 One option is to discretize the state space & run Q-learning as before

 We can make k buckets each for position, velocity, angle, angular velocity

 We develop a policy for how to act given the probabilities on each row of Q

 We run that policy & update Q as before

 What makes using this approach hard?

 Do we have any alternatives?

16

A neural network or other

approach can model Q

 Another option is to model Q as a function: given the 4-D input state, we

build a function that estimates how good each action is

 With this approach…

 No discretization necessary! (Not even a path to discretization is necessary!)

 We can use whatever model we like to produce probabilities for Q(st, •)!

 The model can be arbitrarily complex!

 We still use the same update rule – only with a model for Q rather than lookups!

17

Q-as-function works well as

problems get more complex

 How could we represent the state space for Atari games?

 As the problems get more complex, treating Q as a function is useful

18

Let’s formulate

Pong with RL….

 What is the space of observations?

 How do we turn observations into states?

 Convolutional neural networks for vision, whose outputs are probabilities
for actions instead of probabilities for Pekingese, Afghans, tables, etc.

 Motion is key  input is 2 frames, and/or differences of frames

 What is the space of actions?

 Up/down (maybe also stay put?)

 How do we formulate rewards?

 -100 if ball passes (maybe also -1 for each move?)

 The computer will figure out how to satisfy the reward function in
unintuitive and perhaps unwanted ways…

19

Training a reinforcement learning

model with rollouts

 Each time we ask the agent to make decisions until the game is
over/goal is reached, we call it a (policy) rollout

 Training works like this:

1. Using a single model, we do n rollouts

2. We update the model for Q based on which moves turned out to be
good/bad

3. We repeat until the model performs well

 How big should n be?

 How fast does this approach learn?

20

How do we deal with slowness in

training RL models?

 Reframe the setup to address sparsity of rewards:

 Pre-train with supervised learning, then RL to fine-tune

 “Traces” back over time to every state that contributed along a path

 Focus exploration on areas that turned out to be unexpectedly good

 Use an actor-critic algorithm instead of sampling a single action:

 Model both the “goodness” of actions (actor) and the “goodness” of each

outcome state (critic)

 Apply updates for all actions based on estimates of all their goodnesses

 Use more compute power:

 Ask the agent to play itself and/or have multiple copies simultaneously

21

Some games are harder than

others…

22

Karpathy

Montezuma’s Revenge Frostbite

http://karpathy.github.io/2016/05/31/rl/

Do RL methods learn like humans?

 In RL, the reward function is discovered – humans are told

 In RL, the agent starts from scratch each time – humans have
background knowledge (physics, psychology, context)

 In RL, the solution is found via brute force repetitive experiences of
both good and bad outcomes – humans make inferences

 RL could work equally well if pixels were permuted or the reward
function was chosen at random – humans would fail

 So… what does this all mean for “artificial intelligence”?

 When does each approach have an advantage?

23

Art

Karpathy

https://codegolf.stackexchange.com/questions/35005/rearrange-pixels-in-image-so-it-cant-be-recognized-and-then-get-it-back/35034
http://karpathy.github.io/2016/05/31/rl/

Reinforcement learning is popular

and growing… (but not the only AI game in town)

 Some visual demos of RL math in practice:

 Helicopter stunts (2008)

 Follow a road (2011)

 Avoid obstacles (2012)

 Breakout (computer game) (2014)

 Robot playing with Legos (2015)

 Quadruped locomotion (2016)

 Doom (computer game) (2016)

 Biped locomotion (2017)

 Traditional robotics (control theory & kinematics math – not RL math):

 BigDog (2010)

 SpotMini (2016)

24

https://www.youtube.com/watch?v=VCdxqn0fcnE
https://www.youtube.com/watch?v=jaTOSLd56hI
https://www.youtube.com/watch?v=ffGRfegqs-U
https://www.youtube.com/watch?v=V1eYniJ0Rnk
https://www.youtube.com/watch?v=JeVppkoloXs
https://www.youtube.com/watch?v=KPfzRSBzNX4
https://www.youtube.com/watch?v=oo0TraGu6QY
https://www.youtube.com/watch?v=V1eYniJ0Rnk
https://www.youtube.com/watch?v=oo0TraGu6QY
https://www.youtube.com/watch?v=G4lT9CLyCNw
https://www.youtube.com/watch?v=cNZPRsrwumQ
https://www.youtube.com/watch?v=tf7IEVTDjng

Resources

 Explanations with code:

 Johannes Rieke’s Jupyter notebook to solve a maze with RL

 Aurélien Géron’s Jupyter notebook to accompany a book teaching RL
through cart-pole and PacMan

 Andrej Karpathy’s blog post on RL with neural networks to play Pong

 Prose explanations:

 David Silver’s introductory lecture slides in a course on general RL

 Nervana post on Deep Q-learning

 Solving Montezuma’s Revenge: Kulkarni and Narasimhan et al. (2016)

 OpenAI Gym, for exploring RL and comparing your
implementation’s performance on benchmark problems

25

https://github.com/jrieke/reinforcement-maze/blob/master/deep-Q.ipynb
https://github.com/ageron/handson-ml/blob/master/16_reinforcement_learning.ipynb
http://karpathy.github.io/2016/05/31/rl/
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/intro_RL.pdf
https://www.nervanasys.com/demystifying-deep-reinforcement-learning/
https://arxiv.org/pdf/1604.06057.pdf
https://gym.openai.com/

At 8:00 pm, you are able to…

 Competence (able to perform on your own, with varying levels of perfection):

 Describe how reinforcement learning works and how RL differs from supervised learning

 Diagnose when RL vs. supervised learning is appropriate for a problem

 Know that we can model the quality of an action with a lookup table or a more complex function
like a neural network; name a weakness of lookup tables that models/functions fix

 Explain an upper confidence bound and why it is better than choosing actions greedily

 Articulate similarities and differences in how reinforcement learning and humans solve problems

 Exposure (aware):

 Be aware of the three major paradigms of machine learning

 Be aware of 1) how we mathematically formalize RL problems, and 2) how we map actual problems
to the formalism

 Have been talked through the Q-learning update rule

 Be familiar with terms from reinforcement learning: agent, timestep, policy, Q-learning, discounting,
discretization, rollout, exploration/exploitation tradeoff, upper confidence bound

 Be familiar with three touchstone RL problems: gridworlds/mazes, cart-pole, Atari games

 Know where to go for additional RL resources and Jupyter notebooks

26

