
Concurrency 
at Work
Sree Gopinath
Chris Collins
Pamela Toman

August 25, 2021



We’re going to delve into key ideas that don’t always get covered in school but matter in 
professional contexts.

1. Sree will share how Cortex Xpanse performs “port scanning” to know what is actually on 
the internet; this was the seed of Expanse-the-startup

2. Chris will share how Cortex Xpanse uses “functional programming” to write data 
processing code that parallelizes cleanly (modern MapReduce)

3. Pamela will share how Cortex Xpanse uses “microservices” to make teams & services 
independent of each other for ML

All of this relates directly to what you’ve learned this quarter. 

It will be useful for you in becoming (& being perceived as) a Real Software Engineer™!

What are we here for?



Cortex Xpanse is a leader in attack surface management

Externally-Facing 
On-Prem Assets

Internet Assets 
Owned by You

IoT & 
Mobile Devices

Supply Chain 
Assets

M&A 
IT Infrastructure

Cloud 
Environments

Internally-
Facing Assets

Unsanctioned 
Cloud Assets

Attack Surface

3  |  © 2020 Palo Alto Networks, Inc. All rights reserved.



Bad actors are 
constantly checking for 
vulnerabilities

● Weaknesses are 
easily detected

● Weaknesses are 
easily exploited
 

● Everyone has 
weaknesses

Cortex Xpanse discovers 
what is on a network that...

● The company didn’t 
even know about

● The company knew 
about but had 
accidentally 
misconfigured

Unmanaged and 
misconfigured assets 
compromise security.

Attack surface management is about accidental vulnerabilities

4  |  © 2020 Palo Alto Networks, Inc. All rights reserved.



To find and surface crackable web services, we need to…. 

● Monitor what’s on “the internet”
● Figure out which of those things are “yours”
● Assess “dangerousness”
● Process & display all that

This needs to happen at scale and stay current

It’s a hard problem (solving it is worth at least $800 million)

What does the computer system need to do?

5  |  © 2020 Palo Alto Networks, Inc. All rights reserved.



Let’s design a system for attack surface management

6  |  © 2020 Palo Alto Networks, Inc. All rights reserved.

Collect facts 
about the 
internet

Anyone who buys a domain/certificate/IP must provide contact info:

(We know more about assets/companies than just their registration info)



Let’s design a system for attack surface management

7  |  © 2020 Palo Alto Networks, Inc. All rights reserved.

Collect facts 
about the 
internet

Attribute 
assets to 

companies

domain
cmcrequest.com

IP address
34.107.151.202

certificate
MIIGbDCCBVSg...

?



Let’s design a system for attack surface management

8  |  © 2020 Palo Alto Networks, Inc. All rights reserved.

Collect facts 
about the 
internet

Attribute 
assets to 

companies

Identify 
vulnerabilities Display



Engineering teams support each subsystem

9  |  © 2020 Palo Alto Networks, Inc. All rights reserved.

Collect facts 
about the 
internet

Attribute 
assets to 

companies

Identify 
vulnerabilities Display

Sree 
Port scanning

Pamela
Microservices

Chris: Data processing

We’re focusing on the aspects most relevant to CS 110.



<snip 57 slides>
The other sections belong to other people. I’m not sharing them.



Microservices:
The whats & whys

Pamela Toman
Machine Learning Engineering

August 2021



● It’s common to deploy machine learning models as “microservices”

○ Customers pay Cortex Xpanse to find their unknown-and-crackable web services quickly

○ Machine learning helps us identify “what services belong to whom”

● Microservices decouple your application into subcomponents that scale independently

● CS 110’s core design concepts extend to networked environments:

○ Each worker does a single thing

○ Pools of workers share a single point of entry

○ Communication happens through a request/response model

● Microservices are more work but sometimes very useful

Key takeaways

12  |  © 2020 Palo Alto Networks, Inc. All rights reserved.



Let’s design a system 
for asset attribution…

(like an interview)



Let’s design a system for attack surface management

14  |  © 2020 Palo Alto Networks, Inc. All rights reserved.

Collect facts 
about the 
internet

Attribute 
assets to 

companies

Identify 
vulnerabilities Display

!
What makes 

this stage 
fun?

Rephrase the goal: 
For each asset on the internet, who does it belong to?



Identifying what an organization owns is hard

The engineering problem:

● Internet-scale 
● Balance between speed & money
● Deploying, managing, and monitoring

The machine learning problem:

● Asset change & churn
● Shadow IT
● Mergers & acquisitions, divestitures, ...

Cortex Xpanse generally finds 10-30% more assets
than customers were tracking

Knowing what is exposed on your full attack surface is non-trivial

15  |  © 2020 Palo Alto Networks, Inc. All rights reserved.

Global internet data 
(PBs!)

Organization-specific 
data



16  |  © 2020 Palo Alto Networks, Inc. All rights reserved.

We want a ton of context for 
the ML model (columns). And 
we’re aware of a ton of assets 
on the internet (rows). Our data 
are expensive to process!

What do we do?



Let’s reframe as 2 problems: “filtering” separate from “prediction”

17  |  © 2020 Palo Alto Networks, Inc. All rights reserved.

Filter likely 
asset-company 

pairs

Predict which 
pairs are truly 

owned



It’s common that MLE uses different core tech from non-MLE

18  |  © 2020 Palo Alto Networks, Inc. All rights reserved.

Filter likely 
asset-company 

pairs

Predict which 
pairs are truly 

owned

Big Data 
Engineering

Java
Beam/Dataflow

Machine Learning 
Engineering

Python 
Flask/gunicorn



How can we build a system that….

● Uses a different language & team for each 
subcomponent?

AND
● Scales to the size of the internet?

AND
● Costs no more resources than necessary?



Microservices to the rescue!

A powerful concept in concurrency:
Total independence of parts. 

Independence is good for:
(1) team ownership & (2) appropriate scaling

(But what does that even tangibly mean? How does it manifest in Engineering-land?)

20  |  © 2020 Palo Alto Networks, Inc. All rights reserved.



Microservices decouple subcomponents via network APIs

Microservices apply two core ideas:

● Decoupling: no shared knowledge between units
(always good! like pipeable shell commands, or decomposing code into functions)

● Networked communication: all inter-unit communication happens over web APIs
(neutral usefulness)

21  |  © 2020 Palo Alto Networks, Inc. All rights reserved.



The “which company does this asset belong to” service:

● Listens for connections on the /predict  endpoint
● Validates the requests
● Executes 
● Responds in expected format

The service is a black box

We can change it however we want (the code, libraries, language, ML features, anything)

Microservices are usually deployed over the internet

22  |  © 2020 Palo Alto Networks, Inc. All rights reserved.

Client ServiceAPI

Request

Response



The “which company does this asset belong to” service:

● Listens for connections on the /predict  endpoint
● Validates the requests
● Executes 
● Responds in expected format

The service is a black box

We can change it however we want (the code, libraries, language, ML features, anything)

Microservices are usually deployed over the internet

23  |  © 2020 Palo Alto Networks, Inc. All rights reserved.

Application

ML Model 
Microservice: 

Who owns this 
asset?

API

Assets & companies

Predictions



Even with our service running, it’s not yet useful in production

So far we have…

● Code that predicts ownership of assets
● Ability to send a message to /predict  and get a response
● A set of assets & companies we want to evaluate

But on its own, that’s still not enough.

24  |  © 2020 Palo Alto Networks, Inc. All rights reserved.

We’ve got a service in our dev 
environment. Now we need to 
productionize it.

What do we consider?



The ML prediction service needs to serve a lot 
of requests:

● Many millions of requests each day
● They come in high-volume batches

The attribution workload is high-volume and 
spiky

We need to know about the workload

25  |  © 2020 Palo Alto Networks, Inc. All rights reserved.

One machine can’t handle all 
the requests.

What do we do?



We duplicate with multiple machines and “containerization”

26  |  © 2020 Palo Alto Networks, Inc. All rights reserved.

Similar to duplicating processes with fork...

We duplicate services with “containerization” 
(e.g., Docker)

● Each service lives in a very lightweight 
quasi-virtual machine

● Duplicates (replicas) are entirely identical

● We fit more than 1 container per machine

● It’s very fast to boot up more containers

Now the ML can predict on thousands of 
requests near-simultaneously and cheaply!

Duplicating one service 
per machine takes a 

LOT of resources

Duplication with 
containers is more 

efficient

Machine

Operating System

Libraries

ML Service

IP

Machine

Operating System

Libraries

ML Service

IP

Machine

Docker Engine

Operating System

Libs

ML

Libs

ML

Libs

ML

IP

Machine

Docker Engine

Operating System

Libs

ML

Libs

ML

Libs

ML

IP



27  |  © 2020 Palo Alto Networks, Inc. All rights reserved.

We can create service replicas 
on the fly. But how do we know 
when to create more?

What do we do?



We use orchestration software to manage how many replicas

Orchestration software (e.g., Kubernetes) manages the “container lifecycle”:

● When do we need to bring up more replicas?
● When can we kill replicas?

We describe what we want, and let Kubernetes figure out “how”

● We get to ignore how containerized replicas map to physical machines
● We get to ignore whether there are “enough” copies
● The service scales based on actual need, independent of other components

28  |  © 2020 Palo Alto Networks, Inc. All rights reserved.



29  |  © 2020 Palo Alto Networks, Inc. All rights reserved.

We have an ever-changing 
number of replicas. How does a 
client actually find a copy of the 
service?

What do we do?



If we have an arbitrary number of replicas, how does the backend client know which copy 
of the ML prediction service to talk to?

We need a single point of entry

30  |  © 2020 Palo Alto Networks, Inc. All rights reserved.

We introduce a layer of abstraction:

● A “reverse proxy” sits in front of all the duplicates (e.g., nginx)
● The client knows about 1 location: the proxy
● The proxy knows about N locations: the service replicas that run the workload

This is similar to a threadpool!

(...if the threadpool had another 
software layer that dynamically 
adjusted the number of threads)



Microservices decouple complicated code (like ML models) from the rest of the system:

● The “services” can be black boxes to everyone else
● They come bundled with everything they need to run
● The containerized bundle can get duplicated if the load goes up
● We use a reverse proxy as a single point of entry

Microservices are particularly useful if you want independence of parts 
(multiple teams, multiple languages, independent scaling of subcomponents)

There are costs to a microservice architecture:

● More dependencies (like the network) mean more possible points of failure
● Network communications are slow
● You’ve got to write & maintain more code
● You’ve got to be comfortable with a larger number of technologies

To recap….

31  |  © 2020 Palo Alto Networks, Inc. All rights reserved.



● It’s common to deploy machine learning models as “microservices”

○ Customers pay Cortex Xpanse to find their unknown-and-crackable web services quickly

○ Machine learning helps us identify “what services belong to whom”

● Microservices decouple your application into subcomponents that scale independently

● CS 110’s core design concepts extend to networked environments:

○ Each worker does a single thing

○ Pools of workers share a single point of entry

○ Communication happens through a request/response model

● Microservices are more work but sometimes very useful

Key takeaways

32  |  © 2020 Palo Alto Networks, Inc. All rights reserved.



paloaltonetworks.com

Thank you


